
Control structure:
Selections

01204111 Computers and Programming

Chalermsak Chatdokmaiprai

Department of Computer Engineering
Kasetsart University

Cliparts are taken from http://openclipart.org Revised 2018/09/05

http://openclipart.org/

2

Outline

•Boolean Type and Expressions

•Fundamental Flow Controls

•Flowcharts: Graphical Representation of Controls

•Basic Selections: if statements

•Basic Selections: if-else statements

•Programming Examples

3

>>> x = True
>>> y = False
>>> print(x)
True
>>> print(y)
False

•Type bool have two possible values: True and False

Python’s Boolean Type: bool

>>> print(True)
True
>>> print(False)
False

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>
>>> type(x)
<class 'bool'>

Values can be printed out.

Values can be assigned
to variables.

You can check
their types.

4

Boolean Expressions
• In Mathematics, a Boolean expression is

an expression whose value is either True or False.
◦ 20 > 10
◦ 5 is a factor of 153
◦ 18 is not a prime number and is divisible by 3
◦ x > 5 or x < -5

•Evaluating a Boolean expression is just like answering
a yes/no question in human languages:

◦ Do you want the coffee? (yes/no)
◦ Have you found the answer? (yes/no)
◦ Is 20 greater than 10? (yes/no)
◦ Is 5 a factor of 153? (yes/no)

5

Boolean Values

Yes True

No False

[Images reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]

6

Boolean Expressions in Python

• In Python, a Boolean expression is an expression
of type bool, which is evaluated to either True or
False.

>>> print(5 > 3)
True
>>> print(5 < 3)
False
>>> print(5 > 3 and 'pig' != 'rat')
True
>>> x = 5
>>> pet = 'pig'
>>> print(x > 3 and pet != 'rat')
True
>>> print(x*2 > 100 or x+2 > 100)
False

You can use print() to evaluate

a boolean expression and print
the result.

>>> x > 3
True
>>> x > 10 or x < 0
False

In interactive mode,
print() can be omitted.

7

Watch Out!

•Python is case-sensitive so …
◦ False and false are not the same.

•Python’s bool constants are written
precisely as:

◦ True, or
◦ False

[This page is reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]

8

•We can use a relational operator to compare
two things:

How to write a Boolean expression in Python

Meaning Operator

Equal ==

Not equal !=

Greater than >

Greater than or equal >=

Less than <

Less than or equal <=

9

•We can use logical operators to combine
two or more Boolean expressions:

How to write a Boolean expression in Python

Meaning Operator

Boolean AND and

Boolean OR or

Boolean NOT not

10

Quick Review
p q p and q

True True True

True False False

False True False

False False False

p q p or q

True True True

True False True

False True True

False False False

p not p

True False

False True

George Boole, 1815-1864
An English mathematician

The founder of Boolean Algebra

[Image via http://www.storyofmathematics.com/19th_boole.html]

11

Hands-On Examples
>>> i = 10
>>> j = 15
>>> print(j < i)
False

>>> r = i+2 >= 10
>>> print(r)
True

A boolean expression can be
assigned to a variable.

>>> print((i%2) != 0)
False
>>> print(not ((i%2) == 0))
False

Both expressions

are logically
equivalent.

>>> print(i+j >= 5 and i+j <= 25)
True
>>> print(5 <= i+j <= 25)
True

Both expressions

are logically
equivalent.

>>> print((not r) or (i > 20 and i <= j))
False

You can nest

them if you

know what you
mean.

12

Python Operator Precedence

Category Operators Associativity
Subscription, call, attribute a[x] f(x) x.attribute left to right

Exponentiation ** right to left

Unary sign +x -x left to right

Multiplicative * / // % left to right

Additive + - left to right

Relational (comparison) == != < > <= >= left to right

Boolean NOT not left to right

Boolean AND and left to right

Boolean OR or left to right

• From the highest precedence to the lowest down the table.
• Operators on the same row have the same precedence.

13

Operator Precedence: Examples

passed = i/j**3-2<10 or math.sqrt(i*j)>=20

The result is the

value assigned to
the variable passed

>>> 4**2**3
65536
>>> (4**2)**3
4096
>>> 4**(2**3)
65536

Operator **

is right-to-left
associative.

14

More Example

>>> def isroot(x):
return x**2 + 3*x - 10 == 0

>>> print(isroot(2))
True
>>> isroot(-3)
False
>>> isroot(-5)
True
>>> isroot(0)
False

Call the function to check if
the given number is a root.

❖ Write a function to check if a given number is
a root of the equation

X2 + 3X - 10 = 0

Define a function
to do the task.

In interactive mode,
print() can be omitted.

15

Outline

•Boolean Data Type and Expressions

•Fundamental Flow Controls

•Flowcharts: Graphical Representation of Controls

•Basic Selections: if statements

•Basic Selections: if-else statements

•Programming Examples

16

Fundamental Flow Controls

• Sequence

• Subroutine

• Selection (or Branching)

• Repetition (or Iteration or Loop)

You have already
learned and used
these two control

structures.

17

Schematic View of Flow Controls

Sequence

RepetitionSubroutine

Selection

18

Outline

•Boolean Data Type and Expressions

•Fundamental Flow Controls

•Flowcharts: Graphical Representation of Controls

•Basic Selections: if statements

•Basic Selections: if-else statements

•Programming Examples

19

Flowcharts: Graphical Representation of Controls

Basic flowchart symbols:

Terminator

Process

Input/output

Condition

Connector

Flow line

20

start

nOdd = 0
nEven = 0

End of
input ?

read k

false

k%2 == 0

nEven = nEven+1 nOdd = nOdd+1

falsetrue

true
write

nOdd, nEven

end

Example:

Can you figure out
what task

this flowchart
represents?

Try to run this flowchart
with the input sequence:

5, 1, 4, 9, 8

21

Outline

•Boolean Data Type and Expressions

•Fundamental Flow Controls

•Flowcharts: Graphical Representation of Controls

•Basic Selections: if statements

•Basic Selections: if-else statements

•Programming Examples

22

Normal Sequential Flow

•This is the default program flow unless
specified otherwise.

x = int(input())

y = int(input())

print(x+y)

print("Hello",x)

z = x * y + 10

print(z)
[Images reproduced by kind permission of

Chaiporn Jaikaeo & Jittat Fakcharoenphol]

23

Selection flow with if-statement

•Also called conditional execution

When height

is 120

True

When height

is 160

height <= 140

[Images reproduced by kind permission of

Chaiporn Jaikaeo & Jittat Fakcharoenphol]

price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

24

Basic Selection: if statement

•if statement is used to decide whether
a code block is to be executed or not,
depending on a condition.

•The statements in the code block will be
executed only if the condition is True.

25

Basic Selection: if statement

Syntax

Semantics

if condition:

statement1
statement2

.

.

statementn

A Code Block

False

True

condition

statementn

statement2

statement1

Condition must be

a Boolean expression.

26

price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

Example

height <= 140

True

price = 0

False

print price

price = 40

print 'Hello kids!'

if height <= 140:

print('Hello kids!')

price = 0

height <= 140

True

price = 0

False

print 'Hello kids!'

[Image: courtesy of Mass Rapid Transit Authority of Thailand]

27

price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

Make it a function

if height <= 140:

print('Hello kids!')

price = 0

height <=
140True

price = 0

False

print price

price = 40

print 'Hello
kids!'

height <= 140

True

price = 0

False

print 'Hello kids!'

def mrt_fee(height) :

price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

>>> mrt_fee(140)
Hello kids!
price = 0
>>> mrt_fee(150)
price = 40
>>>

Test
it.

28

Code Blocks

• In Python, a line that ends
with : (colon) indicates
that the next line starts a
new code block.

def mrt_fee(height) :

price = 40

if height <= 140 :

print('Hello kids!')

price = 0

print('price =', price)

A code block

of 3 statements

•A code block consists of
one or more statements
that are indented equally
deeply from the left.

A code block

of 2 statements

1st level of

indentation

2nd level of

indentation

29

Be Careful

•Python uses the concept of blocks extensively.

•Thus, you must be very careful about indentation.

Fdskfjsdlkfslkdjfdsff

fdskfsdflksdlkfdsf:

fddslfldskf

fdsfkdsfdsfd

fdkfddfdfd

fdkfdlf

fdslkdskslkdjsld

Fdskfjsdlkfslkdjfdsff

fdskfsdflksdlkfdsf:

fddslfldskf

fdsfkdsfdsfd

fdkfddfdfd

fdkfdlf

fdslkdskslkdjsldGood Bad

[Images reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]

30

pass statement for an empty block

•In Python, we cannot have an empty block.

•If you want a block that does nothing, use
the pass statement.

if height <= 140:

print("I'm here")

if height <= 140:

pass

print("I'm here")

[This page is adapted and reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]

height <= 140

True False

print I'm here

p
a

s
s

31

F

T

b > max

max = a

max = b

return max

More Example: Find the larger of two integers

def max_of_two(a, b):
max = a
if b > max:

max = b
return max

Python Code

Flow of execution
The function max_of_two()
• receives two number parameters

a and b.
• returns the larger of them.

>>> max_of_two(2, 3)
3
>>> max_of_two(3, 2)
3
>>> max_of_two(3, 3)
3

Test it.

32

Outline

•Boolean Data Type and Expressions

•Fundamental Flow Controls

•Flowcharts: Graphical Representation of Controls

•Basic Selections: if statements

•Basic Selections: if-else statements

•Programming Examples

33

if-else statements : Alternative Execution

Source: http://splinedoctors.com/2009/02/hurry-up-and-choose/

34

if versus if-else

if statement if-else statement

[Images reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]

35

Alternative Execution: if-else statement

Python Syntax Semantics

if condition:

Code Block1

else:

Code Block2

Condition is

a Boolean

expression.

FalseTrue

Code Block1
Code Block2

condition

Don't forget

the colons

and

indentation

36

F

T

b > max

max = a

max = b

return max

Example: The function max_of_two() revisited

def max_of_two(a, b):
max = a
if b > max:

max = b
return max

Python Code Flow of execution

This version:
• uses if (without else) statement
• executes one or two assignments

>>> max_of_two(2, 3)
3
>>> max_of_two(3, 3)
3

37

Example: another way to write max_of_two()

def max_of_two(a, b):
if a > b:

max = a
else:

max = b
return max

Python CodeFlow of execution

FT

max = a

a > b

max = b

return max

This version:
• uses if-else statement
• always executes only one assignment

38

Or a slimmer version!

def max_of_two(a, b):
if a > b:

return a
else:

return b

>>> print(max_of_two(3,2))
3
>>> max_of_two(3, 2)
3
>>> max_of_two(2, 3)
3
>>> x = 5
>>> max_of_two(3*x, x**2)
25

Test it.

In interactive

mode, print()
can be omitted.

39

Example:
if and else code blocks with several statements
def payment(nitems, itemprice):

price = nitems*itemprice
if nitems > 10:

print('You got 10% discount.')
price = 0.9*price
print(f'You also got {nitems//3} stamps.')

else:
print('You got 5% discount.')
price = 0.95*price

print(f'Total payment is {price} bahts.')

code blocks

inside the if-else

statement.

>>> payment(10, 3)
You got 5% discount.
Total payment is 28.5 bahts.
>>> payment(itemprice=5, nitems=20)
You got 10% discount.
You also got 6 stamps.
Total payment is 90.0 bahts.
>>>

Test it.

40

Outline

•Boolean Data Type and Expressions

•Fundamental Flow Controls

•Flowcharts: Graphical Representation of Controls

•Basic Selections: if statements

•Basic Selections: if-else statements

•Programming Examples

41

Task: Solving quadratic equations

❖Given the three coefficients a, b, and c

of a quadratic equation ax2 + bx + c = 0

where a 0, find the roots of the

equation.

A root is a value
of x that satisfies
the equation

42

Solving quadratic equations - I/O Specification

Sample
Run

Enter 1st coefficient: 2
Enter 2nd coefficient: -1
Enter 3rd coefficient: -1
Two real roots: 1 and -0.5

Sample
Run

Sample
Run

Enter 1st coefficient: 1
Enter 2nd coefficient: 8
Enter 3rd coefficient: 16
Only one real root: -4

Enter 1st coefficient: 5
Enter 2nd coefficient: 2
Enter 3rd coefficient: 1
Two complex roots: -0.2+0.4i and -0.2-0.4i

Sample
Run

Enter 1st coefficient: 0
Enter 2nd coefficient: -2
Enter 3rd coefficient: 5
1st coefficient can’t be zero. Program exits.

43

Solving quadratic equations - Ideas

❖The roots of a quadratic equation ax2 + bx + c = 0
can be calculated by the formula:

❖The term b2 − 4ac in the formula is called the
discriminant (D) of the equation because it can
discriminate between the possible types of roots.

a

acbb
x

2

42 −−
=

44

Solving quadratic equations - Ideas

The discriminant D = b2 − 4ac of the equation
determines the type of roots as follows:

➢ If D > 0, there are two real roots: and

➢ If D = 0, there is only one real root:

➢ If D < 0, there are two complex roots:

and

a

Db

2

+−

a

Db

2

−−

a

b

2

−

a

D
i

a

b

22

−
+

−

a

D
i

a

b

22

−
−

−

Now we've

got enough

information

to write the
program.

45

Next: Developing the program

We are going to demonstrate a useful,

effective development technique

called

Incremental Development
together with

Incremental test

46

Topmost Steps
❖The main routine:

1. reads the three coefficients a, b, and c, making
sure that a is not zero.

2. uses a, b, and c to solve and output the roots.

import sys
from math import sqrt

----- main -----
a, b, c = read_coefficients()
if a == 0:

print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

The supreme
commander main
usually doesn’t do

things himself.
He only gives orders.

exit this running program
immediately

47

Before going on, we'd better test it

import sys
from math import sqrt

----- main -----
a, b, c = read_coefficients()

if a == 0:
print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

def read_coefficients():
print('In read_coefficients:') # dummy code
return 1, 2, 3 # dummy code

def solve_and_output(a, b, c):
print("In solve_and_output:", a, b, c) # dummy code

print('In main: main receives', a, b, c) # dummy code

We add some

scaffolding code

to be able to test
the main routine.

48

Test Results
In read_coefficients:
In main: main receives 1 2 3
In solve_and_output: 1 2 3

Test run

Test run In read_coefficients:
In main: main receives 0 2 3
1st coefficient can't be zero. Program exits.

def read_coefficients():
print('In read_coefficients:') # dummy code
return 0, 2, 3 # dummy code

Change to 0
and rerun it

49

What we've done so far

main

read_coefficients solve_and_output

Done!

This schema is called

the subroutine call tree.

50

Next: Reading the inputs

❖The function read_coefficients()
reads and returns the coefficients a, b, and c.

def read_coefficients():
a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

51

Fit it in, then test the program again

import sys
from math import sqrt

----- main -----
a, b, c = read_coefficients()

if a == 0:
print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

def read_coefficients():
a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

def solve_and_output(a, b, c):
print("In solve_and_output:", a, b, c) # dummy code

print('In main: main receives', a, b, c) # dummy code

Put new code
here.

52

Test Results
Enter 1st coefficient: 1
Enter 2nd coefficient: 2
Enter 3rd coefficient: 3
In main: main receives 1.0 2.0 3.0
In solve_and_output: 1.0 2.0 3.0

Test run

Test run
Enter 1st coefficient: 0
Enter 2nd coefficient: 1
Enter 3rd coefficient: 2
In main: main receives 0.0 1.0 2.0
1st coefficient can't be zero. Program exits.

53

What we’ve done so far

main

read_coefficients solve_and_output

Done!

Done!

54

Next: The Solving Engine

❖The function solve_and_output()
1. computes the discriminant.

2. uses the discriminant to select either the function to
find real roots or the one to find complex roots.

def solve_and_output(a, b, c):
disc = b*b - 4*a*c
if disc >= 0: # has real roots

compute_real_roots(a, b, disc)
else: # has complex roots

compute_complex_roots(a, b, disc)

Formula for roots
needs discriminant

rather than c.

Formula for roots
needs discriminant

rather than c.

55

import sys
from math import sqrt
def read_coefficients():

a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

----- main -----
a, b, c = read_coefficients()
if a == 0:

print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

Fit it in, then test the program again

def solve_and_output(a, b, c):
disc = b*b - 4*a*c
if disc >= 0: # has real roots

compute_real_roots(a, b, disc)
else: # has complex roots

compute_complex_roots(a, b, disc)

Put new code
here.

def compute_real_roots(a, b, disc):
print("In compute_real_roots:", a, b, disc) # dummy code

def compute_complex_roots(a, b, disc):
print("In compute_complex_roots:", a, b, disc) # dummy code

And some

new scaffolds
for testing

Why can we put these two functions after
solve_and_output() that calls them?

56

Test Results
Enter 1st coefficient: 1
Enter 2nd coefficient: -4
Enter 3rd coefficient: 4
In compute_real_roots: 1.0 -4.0 0.0

Test run

Test run Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: -1
In compute_real_roots: 2.0 1.0 9.0

Test run
Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: 1
In compute_complex_roots: 2.0 1.0 -7.0

discriminant is 0
(real root)

discriminant > 0
(real root)

discriminant < 0
(complex root)

57

What we’ve done so far

main

read_coefficients solve_and_output

Done!

Done!

compute_real_roots compute_complex_roots

Done!

58

Before going further, let’s recall the formula:

The discriminant D = b2 − 4ac of the equation
determines the type of roots as follows:

➢ If D > 0, there are two real roots: and

➢ If D = 0, there is only one real root:

➢ If D < 0, there are two complex roots:

and

a

Db

2

+−

a

Db

2

−−

a

b

2

−

a

D
i

a

b

22

−
+

−

a

D
i

a

b

22

−
−

−

59

Next: Compute the real roots

❖The function compute_real_roots()
1. uses the discriminant to select either the formula

for one real root or two real roots.

2. computes and outputs the root(s).

def compute_real_roots(a, b, disc):

if disc == 0:

root = -b / (2*a)

print(f'Only one real root: {root}')

else:

root1 = (-b + sqrt(disc)) / (2*a)

root2 = (-b - sqrt(disc)) / (2*a)

print(f'Two real roots: {root1} and {root2}')

a

b

2

−

a

Db

2

+−

a

Db

2

−−

60

import sys
from math import sqrt
def read_coefficients():

a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

def solve_and_output(a, b, c):
disc = b*b - 4*a*c
if disc >= 0: # has real roots

compute_real_roots(a, b, disc)
else: # has complex roots

compute_complex_roots(a, b, disc)

----- main -----
a, b, c = read_coefficients()
if a == 0:

print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

Fit it in, then test the program again

def compute_complex_roots(a, b, disc):
print("In compute_complex_roots:", a, b, disc) # dummy code

def compute_real_roots(a, b, disc):
if disc == 0:

root = -b / (2*a)
print(f'Only one real root: {root}')

else:
root1 = (-b + sqrt(disc)) / (2*a)
root2 = (-b - sqrt(disc)) / (2*a)
print(f'Two real roots: {root1} and {root2}')

Put new code
here

61

Test Results
Enter 1st coefficient: 1
Enter 2nd coefficient: -4
Enter 3rd coefficient: 4
Only one real root: 2.0

Test run

Test run Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: -1
Two real roots: 0.5 and -1.0

Test run
Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: 1
In compute_complex_roots: 2.0 1.0 -7.0

discriminant is 0
(one real root)

discriminant > 0
(two real roots)

discriminant < 0
(complex root)

Our next
task

62

What we’ve done so far

main

read_coefficients solve_and_output

Done!

Done!

compute_real_roots compute_complex_roots

Done!

Done!

63

Next: Compute the complex roots

❖The function compute_complex_roots()
computes and prints the two complex roots.

def compute_complex_roots(a, b, disc):

Now it’s time
for all good students
to write it yourself!

a

D
i

a

b

22

−
+

−

a

D
i

a

b

22

−
−

−

D < 0

72

Conclusion
• Control structures allow you to control the flow of your

program’s execution

• There are four fundamental control structures: Sequence,
Subroutine, Selection, and Repetition. The previous chapters
have already used the first two.

• The control structure Selection is used to select one of many
possible paths of execution in a program depending on the
given conditions. Each condition is expressed in Python by a
bool expression.

• In Python, Selection can be expressed by the if statements or if-
else statements. The if statement decides whether or not a
code block is to be executed. The if-else statement selects
between two possible code blocks to be executed.

73

References
•Comparison operations in Python:

◦ https://docs.python.org/3/reference/expressions.html#compariso
nsPython operators

•Boolean operations in Python:
◦ https://docs.python.org/3/reference/expressions.html#boolean-

operations

•Good tutorials for if and if-else statements:
◦ http://interactivepython.org/runestone/static/thinkcspy/Selection

/toctree.html

• Floating-point inexactness and rounding errors:
◦ A digression on using floating points

https://docs.python.org/3/reference/expressions.html
https://docs.python.org/3/reference/expressions.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/toctree.html
https://drive.google.com/open?id=1qvyRqxlX-cO5BIo5YT6VaFV6ZDdgGX4u

74

Syntax Summary I

if condition:

Code_Block

if condition:

Code_Block1
else:

Code_Block2

statement1
statement2
...

statementk

if statement

if-else
statement

A Code Block

Condition
must be a bool

expression.

A code block
consists of one or
more statements
indented equally

from the left.

75

Syntax Summary II : Python Operator Precedence

Category Operators Associativity
Subscription, call, attribute a[x] f(x) x.attribute left to right

Exponentiation ** right to left

Unary sign +x -x left to right

Multiplicative * / // % left to right

Additive + - left to right

Relational (comparison) == != < > <= >= left to right

Boolean NOT not left to right

Boolean AND and left to right

Boolean OR or left to right

• From the highest precedence to the lowest down the table.
• Operators on the same row have the same precedence.

76

Revision History
• August 2016 – Chalermsak Chatdokmaiprai

◦ originally created for C#

• July 2017 – Chalermsak Chatdokmaiprai
◦ adapted and enhanced for Python

• July 31, 2018 – Chalermsak Chatdokmaiprai
◦ added examples of mysterious bugs caused by rounding errors

• January 5, 2020 – Chalermsak Chatdokmaiprai
◦ expanded the topic of floating-point rounding errors

• January 12, 2020 – Chalermsak Chatdokmaiprai
◦ minor improvement on the quadratic equation example

mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th

	Slide 1: Control structure: Selections
	Slide 2: Outline
	Slide 3: Python’s Boolean Type: bool
	Slide 4: Boolean Expressions
	Slide 5: Boolean Values
	Slide 6: Boolean Expressions in Python
	Slide 7: Watch Out!
	Slide 8: How to write a Boolean expression in Python
	Slide 9: How to write a Boolean expression in Python
	Slide 10: Quick Review
	Slide 11: Hands-On Examples
	Slide 12: Python Operator Precedence
	Slide 13: Operator Precedence: Examples
	Slide 14: More Example
	Slide 15: Outline
	Slide 16: Fundamental Flow Controls
	Slide 17: Schematic View of Flow Controls
	Slide 18: Outline
	Slide 19: Flowcharts: Graphical Representation of Controls
	Slide 20: Example:
	Slide 21: Outline
	Slide 22: Normal Sequential Flow
	Slide 23: Selection flow with if-statement
	Slide 24: Basic Selection: if statement
	Slide 25: Basic Selection: if statement
	Slide 26: Example
	Slide 27: Make it a function
	Slide 28: Code Blocks
	Slide 29: Be Careful
	Slide 30: pass statement for an empty block
	Slide 31: More Example: Find the larger of two integers
	Slide 32: Outline
	Slide 33: if-else statements : Alternative Execution
	Slide 34: if versus if-else
	Slide 35: Alternative Execution: if-else statement
	Slide 36: Example: The function max_of_two() revisited
	Slide 37: Example: another way to write max_of_two()
	Slide 38: Or a slimmer version!
	Slide 39: Example: if and else code blocks with several statements
	Slide 40: Outline
	Slide 41: Task: Solving quadratic equations
	Slide 42: Solving quadratic equations - I/O Specification
	Slide 43: Solving quadratic equations - Ideas
	Slide 44: Solving quadratic equations - Ideas
	Slide 45: Next: Developing the program
	Slide 46: Topmost Steps
	Slide 47: Before going on, we'd better test it
	Slide 48: Test Results
	Slide 49: What we've done so far
	Slide 50: Next: Reading the inputs
	Slide 51: Fit it in, then test the program again
	Slide 52: Test Results
	Slide 53: What we’ve done so far
	Slide 54: Next: The Solving Engine
	Slide 55: Fit it in, then test the program again
	Slide 56: Test Results
	Slide 57: What we’ve done so far
	Slide 58: Before going further, let’s recall the formula:
	Slide 59: Next: Compute the real roots
	Slide 60: Fit it in, then test the program again
	Slide 61: Test Results
	Slide 62: What we’ve done so far
	Slide 63: Next: Compute the complex roots
	Slide 72: Conclusion
	Slide 73: References
	Slide 74: Syntax Summary I
	Slide 75: Syntax Summary II : Python Operator Precedence
	Slide 76: Revision History

