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>>> x = True
>>> y = False 
>>> print(x)
True
>>> print(y)
False

•Type bool have two possible values: True and False

Python’s Boolean Type: bool

>>> print(True)
True
>>> print(False)
False

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>
>>> type(x)
<class 'bool'>

Values can be printed out.

Values can be assigned 
to variables.

You can check 
their types.
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Boolean Expressions
• In Mathematics, a Boolean expression is 

an expression whose value is either True or False.
◦ 20 > 10
◦ 5 is a factor of 153
◦ 18 is not a prime number and is divisible by 3
◦ x > 5 or x < -5

•Evaluating a Boolean expression is just like answering 
a yes/no question in human languages:

◦ Do you want the coffee?  (yes/no)
◦ Have you found the answer? (yes/no)
◦ Is 20 greater than 10? (yes/no)
◦ Is 5 a factor of 153? (yes/no)
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Boolean Values

Yes True

No False

[Images reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]
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Boolean Expressions in Python

• In Python, a Boolean expression is an expression 
of type bool, which is evaluated to either True or 
False.

>>> print(5 > 3)
True
>>> print(5 < 3)
False
>>> print(5 > 3 and 'pig' != 'rat')
True
>>> x = 5 
>>> pet = 'pig'
>>> print(x > 3 and pet != 'rat')
True
>>> print(x*2 > 100 or x+2 > 100)
False

You can use print() to evaluate 

a boolean expression and print 
the result.

>>> x > 3
True
>>> x > 10 or x < 0
False

In interactive mode, 
print() can be omitted.
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Watch Out!

•Python is case-sensitive so …
◦ False and false are not the same.

•Python’s bool constants are written 
precisely as:

◦ True, or
◦ False

[This page is reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]
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•We can use a relational operator to compare 
two things:

How to write a Boolean expression in Python

Meaning Operator

Equal ==

Not equal !=

Greater than >

Greater than or equal >=

Less than <

Less than or equal <=
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•We can use logical operators to combine 
two or more Boolean expressions:

How to write a Boolean expression in Python

Meaning Operator

Boolean AND and

Boolean OR or

Boolean NOT not
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Quick Review
p q p and q

True True True

True False False

False True False

False False False

p q p or q

True True True

True False True

False True True

False False False

p not p

True False

False True

George Boole, 1815-1864
An English mathematician 

The founder of Boolean Algebra

[Image via http://www.storyofmathematics.com/19th_boole.html]



11

Hands-On Examples
>>> i = 10
>>> j = 15
>>> print(j < i)
False

>>> r = i+2 >= 10
>>> print(r)
True

A boolean expression can be 
assigned to a variable.

>>> print((i%2) != 0)
False
>>> print(not ((i%2) == 0))
False

Both expressions 

are logically 
equivalent.

>>> print(i+j >= 5 and i+j <= 25)
True
>>> print(5 <= i+j <= 25)
True

Both expressions 

are logically 
equivalent.

>>> print((not r) or (i > 20 and i <= j))
False

You can nest 

them if  you 

know what you 
mean.
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Python Operator Precedence

Category Operators Associativity
Subscription, call, attribute a[x]  f(x)  x.attribute left to right

Exponentiation ** right to left

Unary sign +x  -x left to right

Multiplicative *  /  //  % left to right

Additive +  - left to right

Relational (comparison) ==  !=  <  >  <=  >= left to right

Boolean NOT not left to right

Boolean AND and left to right

Boolean OR or left to right

• From the highest precedence to the lowest down the table.
• Operators on the same row have the same precedence.
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Operator Precedence: Examples

passed = i/j**3-2<10 or math.sqrt(i*j)>=20

The result is the 

value assigned to 
the variable passed

>>> 4**2**3
65536
>>> (4**2)**3
4096
>>> 4**(2**3)
65536

Operator ** 

is right-to-left 
associative.
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More Example

>>> def isroot(x):
return x**2 + 3*x - 10 == 0

>>> print(isroot(2))
True
>>> isroot(-3)
False
>>> isroot(-5)
True
>>> isroot(0)
False

Call the function to check if  
the given number is a root.

❖ Write a function to check if a given number is 
a root of the equation 

X2 + 3X - 10 = 0

Define a function 
to do the task.

In interactive mode, 
print() can be omitted.
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Fundamental Flow Controls

• Sequence

• Subroutine

• Selection (or Branching)

• Repetition (or Iteration or Loop)

You have already 
learned and used 
these two control 

structures.
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Schematic View of Flow Controls

Sequence

RepetitionSubroutine

Selection
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Flowcharts: Graphical Representation of Controls

Basic flowchart symbols:

Terminator

Process

Input/output

Condition

Connector

Flow line
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start

nOdd = 0
nEven = 0

End of 
input ?

read  k

false

k%2 == 0

nEven = nEven+1 nOdd = nOdd+1

falsetrue

true
write  

nOdd, nEven

end

Example:

Can you figure out 
what task 

this flowchart 
represents?

Try to run this flowchart 
with the input sequence: 

5, 1, 4, 9, 8
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Normal Sequential Flow

•This is the default program flow unless 
specified otherwise.

x = int(input())

y = int(input())

print(x+y)

print("Hello",x)

z = x * y + 10

print(z)
[Images reproduced by kind permission of 

Chaiporn Jaikaeo & Jittat Fakcharoenphol]
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Selection flow with if-statement

•Also called conditional execution

When height 

is 120

True

When height 

is 160

height <= 140

[Images reproduced by kind permission of 

Chaiporn Jaikaeo & Jittat Fakcharoenphol]

price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)
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Basic Selection: if statement

•if statement is used to decide whether 
a code block is to be executed or not, 
depending on a condition.

•The statements in the code block will be 
executed only if the condition is True.
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Basic Selection: if statement

Syntax

Semantics

if condition:

statement1
statement2

.

.

statementn

A Code Block

False

True

condition

statementn

statement2

statement1

Condition must be 

a Boolean expression.
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price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

Example

height <= 140

True

price = 0

False

print price

price = 40

print 'Hello kids!'

if height <= 140:

print('Hello kids!')

price = 0

height <= 140

True

price = 0

False

print 'Hello kids!'

[Image: courtesy of  Mass Rapid Transit Authority of Thailand]
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price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

Make it a function

if height <= 140:

print('Hello kids!')

price = 0

height <= 
140True

price = 0

False

print price

price = 40

print 'Hello 
kids!'

height <= 140

True

price = 0

False

print 'Hello kids!'

def mrt_fee(height) :

price = 40

if height <= 140:

print('Hello kids!')

price = 0

print('price =', price)

>>> mrt_fee(140)
Hello kids!
price = 0
>>> mrt_fee(150)
price = 40
>>> 

Test 
it.
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Code Blocks

• In Python, a line that ends 
with : (colon) indicates 
that the next line starts a 
new code block.

def mrt_fee(height) :

price = 40

if height <= 140 :

print('Hello kids!')

price = 0

print('price =', price)

A code block

of  3 statements

•A code block consists of 
one or more statements 
that are indented equally 
deeply from the left.

A code block

of  2 statements

1st level of  

indentation

2nd level of  

indentation
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Be Careful

•Python uses the concept of blocks extensively. 

•Thus, you must be very careful about indentation.

Fdskfjsdlkfslkdjfdsff

fdskfsdflksdlkfdsf:

fddslfldskf

fdsfkdsfdsfd

fdkfddfdfd

fdkfdlf

fdslkdskslkdjsld

Fdskfjsdlkfslkdjfdsff

fdskfsdflksdlkfdsf:

fddslfldskf

fdsfkdsfdsfd

fdkfddfdfd

fdkfdlf

fdslkdskslkdjsldGood Bad

[Images reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]



30

pass statement for an empty block

•In Python, we cannot have an empty block.

•If you want a block that does nothing, use 
the pass statement.

if height <= 140:

print("I'm here")



if height <= 140:

pass

print("I'm here")

[This page is adapted and reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]

height <= 140

True False

print I'm here

p
a

s
s
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F

T

b > max

max = a

max = b

return max

More Example: Find the larger of two integers

def max_of_two(a, b):
max = a
if b > max:

max = b
return max

Python Code

Flow of execution
The function max_of_two()
• receives two number parameters 

a and b.
• returns the larger of them.

>>> max_of_two(2, 3)
3
>>> max_of_two(3, 2)
3
>>> max_of_two(3, 3)
3

Test it.
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if-else statements : Alternative Execution

Source: http://splinedoctors.com/2009/02/hurry-up-and-choose/
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if versus if-else

if statement if-else statement

[Images reproduced by kind permission of Chaiporn Jaikaeo & Jittat Fakcharoenphol]
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Alternative Execution: if-else statement

Python Syntax Semantics

if condition: 

Code Block1

else:

Code Block2

Condition is 

a Boolean 

expression.

FalseTrue

Code Block1
Code Block2

condition

Don't forget 

the colons

and 

indentation
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F

T

b > max

max = a

max = b

return max

Example: The function max_of_two() revisited

def max_of_two(a, b):
max = a
if b > max:

max = b
return max

Python Code Flow of execution

This version:
• uses if (without else) statement
• executes one or two assignments

>>> max_of_two(2, 3)
3
>>> max_of_two(3, 3)
3
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Example: another way to write max_of_two()

def max_of_two(a, b):
if a > b:

max = a
else:

max = b
return max

Python CodeFlow of execution

FT

max = a

a > b

max = b

return max

This version:
• uses if-else statement
• always executes only one assignment
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Or a slimmer version!

def max_of_two(a, b):
if a > b:

return a
else:

return b

>>> print(max_of_two(3,2))
3
>>> max_of_two(3, 2)
3
>>> max_of_two(2, 3)
3
>>> x = 5
>>> max_of_two(3*x, x**2)
25

Test it.

In interactive 

mode, print() 
can be omitted.
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Example: 
if and else code blocks with several statements
def payment(nitems, itemprice):

price = nitems*itemprice
if nitems > 10:

print('You got 10% discount.')
price = 0.9*price
print(f'You also got {nitems//3} stamps.')

else:
print('You got 5% discount.')
price = 0.95*price

print(f'Total payment is {price} bahts.')

code blocks 

inside the if-else

statement.  

>>> payment(10, 3)
You got 5% discount.
Total payment is 28.5 bahts.
>>> payment(itemprice=5, nitems=20)
You got 10% discount.
You also got 6 stamps.
Total payment is 90.0 bahts.
>>>

Test it.
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Task: Solving quadratic equations

❖Given the three coefficients a, b, and c

of a quadratic equation ax2 + bx + c = 0

where a  0, find the roots of the 

equation.

A root is a value 
of x that satisfies 
the equation
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Solving quadratic equations - I/O  Specification 

Sample 
Run

Enter 1st coefficient: 2
Enter 2nd coefficient: -1
Enter 3rd coefficient: -1
Two real roots: 1 and -0.5

Sample 
Run

Sample 
Run

Enter 1st coefficient: 1
Enter 2nd coefficient: 8
Enter 3rd coefficient: 16
Only one real root: -4

Enter 1st coefficient: 5
Enter 2nd coefficient: 2
Enter 3rd coefficient: 1
Two complex roots: -0.2+0.4i and -0.2-0.4i 

Sample 
Run

Enter 1st coefficient: 0
Enter 2nd coefficient: -2
Enter 3rd coefficient: 5
1st coefficient can’t be zero. Program exits.
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Solving quadratic equations - Ideas

❖The roots of a quadratic equation ax2 + bx + c = 0 
can be calculated by the formula:

❖The term b2 − 4ac in the formula is called the 
discriminant (D) of the equation because it can 
discriminate between the possible types of roots.

a

acbb
x

2

42 −−
=
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Solving quadratic equations - Ideas

The discriminant D = b2 − 4ac of the equation 
determines the type of roots as follows:

➢ If D > 0, there are two real roots:                 and

➢ If D = 0, there is only one real root:        

➢ If D < 0, there are two complex roots:

and

a

Db

2

+−

a

Db

2

−−

a

b

2

−

a

D
i

a

b

22

−
+

−

a

D
i

a

b

22

−
−

−

Now we've 

got enough 

information 

to write the 
program.
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Next: Developing the program

We are going to demonstrate a useful, 

effective development technique 

called

Incremental Development 
together with

Incremental test
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Topmost Steps
❖The main routine:

1. reads the three coefficients a, b, and c, making 
sure that a is not zero.

2. uses a, b, and c to solve and output the roots.

import sys
from math import sqrt

# ----- main ----- #
a, b, c = read_coefficients()
if a == 0:

print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

The supreme 
commander main
usually doesn’t do 

things himself. 
He only gives orders.

exit this running program 
immediately
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Before going on, we'd better test it

import sys
from math import sqrt

# ----- main ----- #
a, b, c = read_coefficients()

if a == 0:
print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

def read_coefficients():
print('In read_coefficients:') # dummy code
return 1, 2, 3 # dummy code

def solve_and_output(a, b, c):
print("In solve_and_output:", a, b, c) # dummy code

print('In main: main receives', a, b, c) # dummy code

We add some 

scaffolding code 

to be able to test 
the main routine.
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Test Results
In read_coefficients:
In main: main receives 1 2 3
In solve_and_output: 1 2 3

Test run

Test run In read_coefficients:
In main: main receives 0 2 3
1st coefficient can't be zero. Program exits.

def read_coefficients():
print('In read_coefficients:') # dummy code
return 0, 2, 3 # dummy code

Change to 0
and rerun it
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What we've done so far

main

read_coefficients solve_and_output

Done!

This schema is called 

the subroutine call tree.
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Next: Reading the inputs

❖The function read_coefficients()
reads and returns the coefficients a, b, and c. 

def read_coefficients():
a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c
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Fit it in, then test the program again

import sys
from math import sqrt

# ----- main ----- #
a, b, c = read_coefficients()

if a == 0:
print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

def read_coefficients():
a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

def solve_and_output(a, b, c):
print("In solve_and_output:", a, b, c) # dummy code

print('In main: main receives', a, b, c) # dummy code

Put new code 
here.
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Test Results
Enter 1st coefficient: 1
Enter 2nd coefficient: 2
Enter 3rd coefficient: 3
In main: main receives 1.0 2.0 3.0
In solve_and_output: 1.0 2.0 3.0

Test run

Test run
Enter 1st coefficient: 0
Enter 2nd coefficient: 1
Enter 3rd coefficient: 2
In main: main receives 0.0 1.0 2.0
1st coefficient can't be zero. Program exits.
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What we’ve done so far

main

read_coefficients solve_and_output

Done!

Done!
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Next: The Solving Engine

❖The function solve_and_output() 
1. computes the discriminant.

2. uses the discriminant to select either the function to 
find real roots or the one to find complex roots.

def solve_and_output(a, b, c):
disc = b*b - 4*a*c
if disc >= 0: # has real roots

compute_real_roots(a, b, disc)
else: # has complex roots

compute_complex_roots(a, b, disc)

Formula for roots 
needs discriminant 

rather than c.

Formula for roots 
needs discriminant 

rather than c.
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import sys
from math import sqrt
def read_coefficients():

a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

# ----- main ----- #
a, b, c = read_coefficients()
if a == 0:

print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

Fit it in, then test the program again

def solve_and_output(a, b, c):
disc = b*b - 4*a*c
if disc >= 0: # has real roots

compute_real_roots(a, b, disc)
else: # has complex roots

compute_complex_roots(a, b, disc)

Put new code 
here.

def compute_real_roots(a, b, disc):
print("In compute_real_roots:", a, b, disc) # dummy code

def compute_complex_roots(a, b, disc):
print("In compute_complex_roots:", a, b, disc) # dummy code

And some 

new scaffolds 
for testing

Why can we put these two functions after 
solve_and_output() that calls them?
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Test Results
Enter 1st coefficient: 1
Enter 2nd coefficient: -4
Enter 3rd coefficient: 4
In compute_real_roots: 1.0 -4.0 0.0

Test run

Test run Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: -1
In compute_real_roots: 2.0 1.0 9.0

Test run
Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: 1
In compute_complex_roots: 2.0 1.0 -7.0

discriminant is 0
(real root)

discriminant > 0
(real root)

discriminant < 0
(complex root)
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What we’ve done so far

main

read_coefficients solve_and_output

Done!

Done!

compute_real_roots compute_complex_roots

Done!
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Before going further, let’s recall the formula:

The discriminant D = b2 − 4ac of the equation 
determines the type of roots as follows:

➢ If D > 0, there are two real roots:                 and

➢ If D = 0, there is only one real root:        

➢ If D < 0, there are two complex roots:

and
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Next: Compute the real roots

❖The function compute_real_roots()
1. uses the discriminant to select either the formula 

for one real root or two real roots.

2. computes and outputs the root(s).

def compute_real_roots(a, b, disc):

if disc == 0:

root = -b / (2*a)

print(f'Only one real root: {root}')

else:

root1 = (-b + sqrt(disc)) / (2*a)

root2 = (-b - sqrt(disc)) / (2*a)

print(f'Two real roots: {root1} and {root2}')

a

b

2

−

a

Db

2

+−

a

Db

2

−−
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import sys
from math import sqrt
def read_coefficients():

a = float(input('Enter 1st coefficient: '))
b = float(input('Enter 2nd coefficient: '))
c = float(input('Enter 3rd coefficient: '))
return a, b, c

def solve_and_output(a, b, c):
disc = b*b - 4*a*c
if disc >= 0: # has real roots

compute_real_roots(a, b, disc)
else: # has complex roots

compute_complex_roots(a, b, disc)

# ----- main ----- #
a, b, c = read_coefficients()
if a == 0:

print("1st coefficient can't be zero. Program exits.")
sys.exit() # can't do anything more with bad input

solve_and_output(a, b, c)

Fit it in, then test the program again

def compute_complex_roots(a, b, disc):
print("In compute_complex_roots:", a, b, disc) # dummy code

def compute_real_roots(a, b, disc):
if disc == 0:

root = -b / (2*a)
print(f'Only one real root: {root}')

else:
root1 = (-b + sqrt(disc)) / (2*a)
root2 = (-b - sqrt(disc)) / (2*a)
print(f'Two real roots: {root1} and {root2}')

Put new code 
here
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Test Results
Enter 1st coefficient: 1
Enter 2nd coefficient: -4
Enter 3rd coefficient: 4
Only one real root: 2.0

Test run

Test run Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: -1
Two real roots: 0.5 and -1.0

Test run
Enter 1st coefficient: 2
Enter 2nd coefficient: 1
Enter 3rd coefficient: 1
In compute_complex_roots: 2.0 1.0 -7.0

discriminant is 0
(one real root)

discriminant > 0
(two real roots)

discriminant < 0
(complex root)

Our next 
task
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What we’ve done so far

main

read_coefficients solve_and_output

Done!

Done!

compute_real_roots compute_complex_roots

Done!

Done!
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Next: Compute the complex roots

❖The function compute_complex_roots()
computes and prints the two complex roots.

def compute_complex_roots(a, b, disc):

Now it’s time 
for all good students 
to write it yourself!
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D < 0
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Conclusion
• Control structures allow you to control the flow of your 

program’s execution

• There are four fundamental control structures: Sequence, 
Subroutine, Selection, and Repetition. The previous chapters 
have already used the first two.

• The control structure Selection is used to select one of many 
possible paths of execution in a program depending on the 
given conditions. Each condition is expressed in Python by a 
bool expression.

• In Python, Selection can be expressed by the if statements or if-
else statements.  The if statement decides whether or not a 
code block is to be executed.  The if-else statement selects 
between two possible code blocks to be executed.
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Syntax Summary I

if condition: 

Code_Block

if condition: 

Code_Block1
else:

Code_Block2

statement1
statement2
...

statementk

if statement

if-else 
statement

A Code Block

Condition
must be a bool

expression.

A code block
consists of one or 
more statements 
indented equally 

from the left.
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Syntax Summary II : Python Operator Precedence

Category Operators Associativity
Subscription, call, attribute a[x]  f(x)  x.attribute left to right

Exponentiation ** right to left

Unary sign +x  -x left to right

Multiplicative *  /  //  % left to right

Additive +  - left to right

Relational (comparison) ==  !=  <  >  <=  >= left to right

Boolean NOT not left to right

Boolean AND and left to right

Boolean OR or left to right

• From the highest precedence to the lowest down the table.
• Operators on the same row have the same precedence.
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