
Control Structure:
Multiple Selections

Cliparts are taken from http://openclipart.org Revised 2018/07/11

01204111 Computers and Programming

Chalermsak Chatdokmaiprai

Department of Computer Engineering
Kasetsart University

http://openclipart.org/

2

Outline

•Introduction to multiple selections

•Nested Conditionals

•Chained Conditionals

•Programming examples

3

Review : Basic Selections
A single if-else statement
selects one of two statements
(or blocks) to be executed.

F

T

condition

Statement 1

Statement 2

Statement 3

A single if statement
selects whether or not
a code block is to be
executed

condition

Statement1 Statement2

Statement3

Statement 4

T F

in Python
if condition :

Statement1
Statement2

Statement3

in Python
if condition :

Statement1
else:

Statement2
Statement3

Statement4

There are only two possible
paths of execution in both

constructs.

4

Introduction

•Multiple selection
selects one of three
or more paths of
execution.

x > y

m = x m = y

z = x-yz > m

m = 1

r = x+z-m

T F

T

F

How many possible
paths of execution?

Path #1

Path #2

Path #3

Example

5

How to do multiple selections in Python

Multiple
selections

Nested
Conditionals

Chained
Conditionals

6

Outline

•Introduction to multiple selections

•Nested Conditionals

•Chained conditionals

•Programming examples

7

How nested conditionals are possible in Python

Each of these yellow boxes is actually a single statement.
if x > y:

m = x
if x > y:

m = x
z = x+y

if x > y:
m = x
z = x+y

else:
m = y

x = y+1 print('hi')

if condition :
statement1
statement2

else:
statement3
statement4
statement5

statement2

statement4

so each can be put here:

or here:

pass if x > y:
m = x
z = x+y

else:
m = y
z = x-y

8

Example in Python

When an if or if-else
statement is put within

another if or if-else
statement, we calls it
a nested conditional

construct.

if x > 0:
i = 2
if y > 1:

k = 2
else:

if z < 10:
k = 5
if y > 5:

k = x+y
else:

k = x-y

In Python,

indentation is

very, very

important !

9

Nested conditionals start as just a single statement

if x > 0:

else:

Code Block1

Code Block2

i = 2

Statementif y > 1:
k = 2

if z < 10:

Code block

k = 5

Statement

if y > 5:
k = x+y

else:
k = x-y

if x > 0:
i = 2
if y > 1:

k = 2
else:

if z < 10:
k = 5
if y > 5:

k = x+y
else:

k = x-y

x > 0

i = 2

y > 1

z < 10

k = 2

k = 5

y > 5

k=x+y k=x-y

T

T

T

T

F

F

F

F

A single statement Flow of execution

Recall that a code block

follows the line that

ends with a colon.

10

Flow-of-Control
Example x > y

m = x m = y

z = x-yz > m

m = 1

r = x+z-m

T F

T

F
in Python
if x > y :

m = x
if z > m :

m = 1
else:

m = y
z = x-y

r = x+z-m

Path #1Path #2
Path #3

12

Task: The maximum of three numbers

• Write a program that

➢ reads three numbers.

➢ computes and prints the maximum of the three.

Enter 1st number: 25.5
Enter 2nd number: 30
Enter 3rd number: 20.2
The max is 30

Sample
Run

Enter 1st number: 0
Enter 2nd number: -10
Enter 3rd number: -7
The max is 0

Sample
Run

Sample
Run

Enter 1st number: 50
Enter 2nd number: 5
Enter 3rd number: 50
The max is 50

13

The maximum of three numbers - Ideas

❖What is the maximum of 3 numeric values?

• Answer: The value that is not less than
the other two.

• Therefore, to find the maximum is to look
for a value that is not less than the other
two.

• It’s OK if some of them are equal, or even
all of them are equal.

14

Topmost level

--- main ---
x = float(input("Enter 1st number: "))
y = float(input("Enter 2nd number: "))
z = float(input("Enter 3rd number: "))
max = max_of_three(x,y,z)
print(f"The maximum number is {max}")

❖ The main routine:
• Reads three numbers.
• Computes the max by calling max_of_three()
• Prints the max.

15

The function max_of_three() – Design

• Now it’s time to write the function
max_of_three().

• There are many ways to write it.

• We’ll show a few different ways so as to
demonstrate the use of nested conditionals.

16

The function max_of_three() – Version 1

def max_of_three(a, b, c):

if a >= b and a >= c: # check a

return a

else: # a is not the max

Algorithm

if b > c:
return b

else:
return c

if (a is not less than the other two)

a is the max

else # a is not the max

Compete b with c for the max

Efficiency:
2 or 3

comparisons
depending on

the inputs

17

The function max_of_three() – Version 2

def max_of_three(a, b, c):
if a > b: # a may be the max

else: # b may be the max

Algorithm

if a > c:
return a

else:
return c

if (a > b) # so a may be the max

Compete a with c for the max

else # so b may be the max

Compete b with c for the max

Efficiency:
exactly two

comparisons
in all cases

if b > c:
return b

else:
return c

18

The function max_of_three() – Version 3

def max_of_three(a, b, c):

max = a

return max

Algorithm

if b > max:
max = b

• Let max be the value of a

• if (b > max) then

Let max be the value of b

• if (c > max) then

Let max be the value of c

if c > max:
max = c

This is actually a
sequence of two

if statements, not a
nested if construct.

Efficiency:
exactly two

comparisons
in all cases

This version can be
easily extended to

4 or more numbers.

How?

19

The function max_of_three() – Version 4

• No if- or if-else statements used.

• No need to write the function max_of_three().

• Throw away the main routine.

• In fact, no need to write a program at all!

Hmm…?

Amitta Buddh…???

20

Nammo Amitta Pythonic Buddha!

>>> max(5,6)
6
>>> max(5,6,4)
6
>>> max(5,7,10,3)
10
>>> max(3,70,5,8,10,15,75,8,40)
75
>>> type(max)
<class 'builtin_function_or_method'>

21

Outline

•Introduction to multiple selections

•Nested conditionals

•Chained conditionals

•Programming examples

22

Chained Conditionals

•What is a chained conditional ?

The use of an orderly sequence of

k conditions (k  2) to select one of
k+1 code blocks to execute.

❖ It is also informally called the
if-elseif-else control structure.

23

Example
Today is
Friday

Today is
Saturday

Today is
Sunday

Play
football

Go
swimming

Play
basketball

Go
Jogging

T

T

T

F

F

F

Watch a
movie

Go to a
party

What are the

planned activities

on Monday,

Tuesday,

Wednesday, or
Thursday?

Use 3 conditions
to select one of
the four sets of

planned activities

24

Chained conditionals in Python
implemented by nested conditionals

if cond1:
code_block1

else:
if cond2:

code_block2
else:

if cond3:
code_block3

else:
code_block4

cond1

cond2

cond3

code
block1

code
block2

code
block3

code
block4

T

T

T

F

F

F

Use 3 conditions
to select one of
4 code blocks

Note that this whole box is actually
a single Python statement.

Flow of
execution

25

Chained conditionals in Python
implemented by if-elif-else statements

if cond1:
code_block1

else:
if cond2:

code_block2
else:

if cond3:
code_block3

else:
code_block4

cond1

cond2

cond3

code
block1

code
block2

code
block3

code
block4

T

T

T

F

F

F

cond1

cond2

cond3

code
block1

code
block2

code
block3

code
block4

T

T

T

F

F

F

else: followed by if can be

replaced by Python keyword elif

Then you must re-indent them to
become an if-elif-else statement

Then,

rearrange

the flowchart
accordingly

if cond1:
code_block1

elif cond2:
code_block2

elif cond3:
code_block3

else:
code_block4

26

The flow charts of both implementations show that

cond1

cond2

cond3

code
block1

code
block2

code
block3

code
block4

T

T

T

F

F

F

cond1

cond2

cond3

code
block1

code
block2

code
block3

code
block4

T

T

T

F

F

F

Both work
exactly

the same.

if cond1:
code_block1

else:
if cond2:

code_block2
else:

if cond3:
code_block3

else:
code_block4

if cond1:
code_block1

elif cond2:
code_block2

elif cond3:
code_block3

else:
code_block4

Therefore,
these two

Python
constructs

work exactly
the same too.

27

Example: Check how an integer is divided by 5

• Write a function divfive() to check how an
integer is divided by 5:

>>> divfive(50)
50 is divisible by 5
>>> divfive(54)
54 is not divisible by 5
the remainder is 4
>>> divfive(53)
53 is not divisible by 5
the remainder is 3
>>> divfive(52)
52 is not divisible by 5
the remainder is 2
>>> divfive(51)
51 is not divisible by 5
the remainder is 1

Sample
Run

28

def divfive(d): # version 1

rem = d % 5

if rem == 1:

print(d, 'is not divisible by 5')

print('the remainder is 1')

elif rem == 2:

print(d, 'is not divisible by 5')

print('the remainder is 2')

elif rem == 3:

print(d, 'is not divisible by 5')

print('the remainder is 3')

elif rem == 4:

print(d, 'is not divisible by 5')

print('the remainder is 4')

else:

print(d, 'is divisible by 5')

divfive() - version 1 This version is to show

that you can have as

many elif-clauses as

you need.

29

def divfive(d): # version 2

rem = d % 5

if rem == 0:

print(d, 'is divisible by 5')

elif rem == 1:

print(d, 'is not divisible by 5')

print('the remainder is 1')

elif rem == 2:

print(d, 'is not divisible by 5')

print('the remainder is 2')

elif rem == 3:

print(d, 'is not divisible by 5')

print('the remainder is 3')

elif rem == 4:

print(d, 'is not divisible by 5')

print('the remainder is 4')

divfive() - version 2 This version is to

show that you can

have no else-clause

at all if you don't

need it.

30

def divfive(d): # version 3

rem = d % 5

if rem == 0:

print(d, 'is divisible by 5')

else:

print(d, 'is not divisible by 5')

print('the remainder is', rem)

divfive() - version 3 This version is to

show that you can

have no elif-clauses

at all if you don't

need them.

This

becomes

an ordinary

if-else

statement.

You should convince yourself that all these three
versions produce exactly the same result.

32

Task: BMI and Weight Status

❖Write a function bmi_and_status() that

➢ receives weight (in kg) and height (in meters) as
parameters

➢ computes the body-mass index (BMI) and returns
the BMI and weight status.

33

•Given the weight (in kilograms) and the height (in meters)
of a person, the Body-Mass Index (BMI) of the person can
be computed by the formula:

BMI and Weight Status - Idea

BMI =
weight

(height) X (height)

BMI Weight Status

BMI < 18.5 Underweight

18.5  BMI < 25.0 Normal

25.0  BMI < 30.0 Overweight

BMI  30.0 Obese

•The Weight Status of a person is categorized by the BMI as
follows:

34

BMI and Weight Status – Algorithm

BMI < 18.5

BMI < 25.0

BMI < 30.0

wstatus =
"underweight"

wstatus =
"normal"

wstatus =
"overweight"

wstatus =
"obese"

T

T

T

F

F

F

Compute BMI

BMI Weight Status

BMI < 18.5 Underweight

18.5  BMI < 25.0 Normal

25.0  BMI < 30.0 Overweight

BMI  30.0 Obese

Version 1

Here, it's certain that

BMI ≥ 18.5

Here, it's certain that

BMI ≥ 25.0

Here, it's certain that

BMI ≥ 30.0

35

BMI and Weight Status – Python Code : Version 1

def bmi_and_status(weight, height):
bmi = weight/(height*height)

if bmi < 18.5:
wstatus = "underweight"

elif bmi < 25.0:
wstatus = "normal"

elif bmi < 30.0:
wstatus = "overweight"

else:
wstatus = "obese"

return bmi, wstatus

36

BMI and Weight Status – another equivalent algorithm

BMI >= 30.0

BMI >= 25.0

BMI >= 18.5

wstatus =
"obese"

wstatus =
"overweight"

wstatus =
"normal"

wstatus =
"underweight"

T

T

T

F

F

F

Compute BMI

BMI Weight Status

BMI < 18.5 Underweight

18.5  BMI < 25.0 Normal

25.0  BMI < 30.0 Overweight

BMI  30.0 Obese

Version 2

Here, it's certain that

BMI < 30.0

Here, it's certain that

BMI < 25.0

Here, it's certain that

BMI < 18.5

37

BMI and Weight Status – Python Code : Version 2

def bmi_and_status(weight, height):
bmi = weight/(height*height)

if bmi >= 30.0:
wstatus = "obese"

elif bmi >= 25.0:
wstatus = "overweight"

elif bmi >= 18.5:
wstatus = "normal"

else:
wstatus = "underweight"

return bmi, wstatus

38

Next: Write a main routine to test it
def bmi_and_status(weight, height): # version 1

bmi = weight/(height*height)

if bmi < 18.5:
wstatus = "underweight"

elif bmi < 25.0:
wstatus = "normal"

elif bmi < 30.0:
wstatus = "overweight"

else:
wstatus = "obese"

return bmi, wstatus

---- main routine ----

weight = float(input("Enter your weight (in kilograms): "))

height = float(input("Enter your height (in meters): "))

bmi, status = bmi_and_status(weight, height)

print(f"BMI is {bmi:.2f}, weight status: {status}")

39

Test the program, thoroughly

Enter your weight (in kilograms): 120
Enter your height (in meters): 2
BMI is 30.00, weight status: obese

Enter your weight (in kilograms): 100
Enter your height (in meters): 1.8
BMI is 30.86, weight status: obese

Enter your weight (in kilograms): 74
Enter your height (in meters): 2
BMI is 18.50, weight status: normal

Enter your weight (in kilograms): 100
Enter your height (in meters): 2
BMI is 25.00, weight status: overweight

Enter your weight (in kilograms): 70
Enter your height (in meters): 2
BMI is 17.50, weight status: underweight

Enter your weight (in kilograms): 80
Enter your height (in meters): 1.8
BMI is 24.69, weight status: normal

Enter your weight (in kilograms): 90
Enter your height (in meters): 1.8
BMI is 27.78, weight status: overweight

Also try some

inputs that hit

all the three

boundary cases

18.5, 25.0, 30.0

Try input

values that

yield all

possible

outputs

40

Conclusion
• A basic selection control structure uses a single if- or if-else statement to

select one of two paths of execution.

• A mutiple selection control structure selects one of three or more paths of
execution.

• To do a multiple selection in Python, we may use nested conditionals or
chained conditionals.

• We've got a nested conditional when we put one or more if or if-else
statements in a code block within another if or if-else statement. This
naturally gives rise to many different paths of execution.

• A chained conditional is the use of an orderly sequence of k conditions,
k ≥ 2, to select one of k+1 code blocks to execute. In Python, a chained
conditional can be conveniently implemented by an if-elif-else statement.

41

References
• if-elif-else statement in Python:

◦ https://docs.python.org/3/reference/compound_stmts.html#the-
if-statement

◦ https://docs.python.org/3/tutorial/controlflow.html#if-statements

•Good tutorials for multiple selections:
◦ http://interactivepython.org/runestone/static/thinkcspy/Selection

/Nestedconditionals.html

◦ http://interactivepython.org/runestone/static/thinkcspy/Selection
/Chainedconditionals.html

◦ https://www.programiz.com/python-programming/if-elif-else

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/tutorial/controlflow.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/Nestedconditionals.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/Chainedconditionals.html
https://www.programiz.com/python-programming/if-elif-else

42

Major Revision History
•August 2016 – Chalermsak Chatdokmaiprai

◦ originally created for C#

• July 31, 2017 – Chalermsak Chatdokmaiprai
◦ adapted and enhanced for Python

mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th

	Slide 1: Control Structure: Multiple Selections
	Slide 2: Outline
	Slide 3: Review : Basic Selections
	Slide 4: Introduction
	Slide 5: How to do multiple selections in Python
	Slide 6: Outline
	Slide 7: How nested conditionals are possible in Python
	Slide 8: Example in Python
	Slide 9: Nested conditionals start as just a single statement
	Slide 10: Flow-of-Control Example
	Slide 11
	Slide 12: Task: The maximum of three numbers
	Slide 13: The maximum of three numbers - Ideas
	Slide 14: Topmost level
	Slide 15: The function max_of_three() – Design
	Slide 16: The function max_of_three() – Version 1
	Slide 17: The function max_of_three() – Version 2
	Slide 18: The function max_of_three() – Version 3
	Slide 19: The function max_of_three() – Version 4
	Slide 20: Nammo Amitta Pythonic Buddha!
	Slide 21: Outline
	Slide 22: Chained Conditionals
	Slide 23: Example
	Slide 24: Chained conditionals in Python implemented by nested conditionals
	Slide 25: Chained conditionals in Python implemented by if-elif-else statements
	Slide 26: The flow charts of both implementations show that
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Task: BMI and Weight Status
	Slide 33: BMI and Weight Status - Idea
	Slide 34: BMI and Weight Status – Algorithm
	Slide 35: BMI and Weight Status – Python Code : Version 1
	Slide 36: BMI and Weight Status – another equivalent algorithm
	Slide 37: BMI and Weight Status – Python Code : Version 2
	Slide 38: Next: Write a main routine to test it
	Slide 39: Test the program, thoroughly
	Slide 40: Conclusion
	Slide 41: References
	Slide 42: Major Revision History

