Control Structure:
Multiple Selections

01204111 Computers and Programming

Chalermsak Chatdokmaiprai

Department of Computer Engineering
Kasetsart University

-]
Cliparts are taken from Revised 2018/07/11

http://openclipart.org/

Outline

*Introduction to multiple selections

*Nested Conditionals
*Chained Conditionals

*Programming examples

Review : Basic Selections

A single if statement # in Python A single if-else statement
selects whether or not 2 ;?c’;‘,jc:n:‘r’]';l] selects one of two statements
a code block is to be ST (or blocks) to be executed.
executed [StatementZ]
Statement3
Statement4 ondition
—Joonditon] =

== \ Statement1 Statement2
tafent v

Statement3
staterfont2
(o2)

Statement 4

1in Pgthon
if [condition] :
Statementl! :
[StatementZJ There are only two possible

paths of execution in both
constructs.

\ A

StatementB]

Introductio

* Multiple selection
selects one of three
or more paths of
execution.

How many possible
paths of execution?

How to do multiple selections in Python

Multiple
selections

/7 \

Nested Chained
Conditionals Conditionals

Outline

*Introduction to multiple selections

*Nested Conditionals
*Chained conditionals

*Programming examples

How nested conditionals are possible in Python

Each of these yellow boxes is actually a single statement.

pass || X = y+1 || print('hi') || if x > y: if x > y: if x > y: if x > y:
m = X m m
Y4 Y4

In
Innu
N S
Innu
X X

X
X+y
else: else:

m=y

X
X+y

N S
Innu

>I<‘<
<

so each can be put he{e:

if conditiion :
statement,
statement, _

else:
statement,

statement,

/I‘

or here:

Example in Python

if x > 0O:
: : i =2
When an if or if-else if y > 1:
statement is put within =2t Y 1
another if or if-else > | else:
statement, we calls it \3\1\5 if z < 10:
a nested conditional | k =5
construct. T— if y > 5:
\l\@ k = x+y
else:
k = x-y
/
In Python,
indentation is
very, very
important !

Nested conditionals start as just a single statement

A single statement Flow of execution

\
Recall that a code block

follows the line that
ends with a colon.

Flow-of-Control <« rath 13 4

-Example |

Bl ey
=

e ——

omen

10

Pregrammmg Example

Task: The maximum of three numbers <?>

* Write a program that
reads three numbers.
computes and prints the maximum of the three.

Enter 1st number: Sample
Sample Enter 2nd number: Run
Run Enter 3rd number:

The max is 30

Enter 1st number: 50

ol Enter 1st number:
P Enter 2nd number:

Run Enter 3rd number:
The max is ©

Enter 2nd number: 5
Enter 3rd number: 50
The max is 50

The maximum of three numbers - Ideas

*»*What is the maximum of 3 numeric values?

* Answer: The value that is not less than
the other two.

* Therefore, to find the maximum is to look
for a value that is not less than the other
two.

* |t's OK if some of them are equal, or even
all of them are equal.

Topmost level

** The main routine:
e Reads three numbers.
* Computes the max by calling max_of three()
* Prints the max.

--- main ---

X = float(input("Enter 1st number: "))
y = float(input("Enter 2nd number: "))
z = float(input("Enter 3rd number: "))
max = max_of three(x,y,z)

print(f"The maximum number is {max}")

The function max_of three() — Design

e Now it’s time to write the function
max_of three().

* There are many ways to write it.

 We'll show a few different ways so as to
demonstrate the use of nested conditionals.

The function max_of three()— Version 1

Algorithm

=

if (ais not less than the other two)

a is the max

else # ais not the max
Compete b with ¢ for the max
def max_of_three(a, b, c):
if a > b and a >= c: # check a
return a . .
Efficiency:
else: # a is not the max 2or3
/i £b > c ™\ compar.lsons
depending on
return b :
the inputs
else:
N return c)

The function max_of three()— Version 2

if (a>b) #soamaybe the max
Algorithm :|'> Compete a with ¢ for the max
else # so b may be the max

Compete b with ¢ for the max

def max_of_three(a, b, c):
if a > b: # a may be the max
if a > c: A
return a
else:
- return ¢ / Efficiency:
else: # b may be the max exactly two
:) :
if b > c: comparisons
return b in all cases
else:

S return c)

The function max_of three()— Version 3

 Let max be the value of a
 if (b > max) then

Algorithm

Let max be the value of b
e if (c>max)then

Let max be the value of ¢

def max_of_three(a, b, c):

This is actually a

max = a sequence of two
"if b > max: “ if statements, not a
max = b nested if construct.

J

(O
if ¢ > max:
max = C

@)
Efficiency:
exactly two

comparisons

in all cases

This version can be

easily extended to
4 or more numbers.

return max

The function max_of three() — Version 4

* No if- or if-else statements used.
* No need to write the function max_of three().

» Throw away the main routine. @

 In fact, no need to write a program at all!

Amitta Buddh...???

Nammo Amitta Pythonic Buddha!

max(5,6)

max(5,6,4)

max(5,7,10,3)

max(3,79,5,8,10,15,75,8,40)
/75

type(max)
<class 'builtin function_or_method’>

Outline

*Introduction to multiple selections

*Nested conditionals
*Chained conditionals

*Programming examples

Chained Conditionals

*What is a chained conditional ?

The use of an orderly sequence of

k conditions (k > 2) to select one of
k+1 code blocks to execute.

“* It is also informally called the
if-elseif-else control structure.

Example /
. T
| Use 3 conditions Friday
to select one of
the four sets of F
planned activities Saturday
F , T Go l
swimming
y l Watch a

Go Play movie
Jogging basketball G:a:ya

\ 4

Play
football

What are the
planned activities
on Monday,
Tuesday,

Wednesday, or
Thursday?

\

Chained conditionals in Python
implemented by nested conditionals

Use 3 conditions Flow of

to select one of execution %
4 code blocks i e

if cond,:
code_blocR,
else:
if cond,:
code_blocR,
else: code | code

if cond,: block, | block,

code_blocR,
else:
code_blocR,

Note that this whole box is actually |
a single Python statement. |

Chained conditionals in Python rearrange

implemented by if-elif-else statements theflowchart

accordingly

= :
F
T

else: followed by if can be

laced by Python k ci'J
replaced by Py Aon- eyword elif code

block,

if cond;:
code_blocR,
elif cond,:
code_blocR,
elif cond,:
code_blocRk,
else: code
code_blocR,

Then you must re-indent them to I i

become an if-elif-else statement

code
block,

code
block,

The flow charts of both implementations show that

code \

block,

code

Both work block, [
exactly
code
the same. viock,

&

if cond,: if cond,:
code_block, licieice code_block,
else: these two elif cond,:
if cond,: Python code_block,
code_blocR, constructs elif cond;:
elsef work exactly code_block,
if cond,: : else:
code_block, the same too. code_blocRk,
else:

code_block,

Example: Check how an integer is divided by 5

e Write a function divfive() to check how an
integer is divided by 5:

divfive(50)
50 is divisible by 5
Sample divfive(54)
Run 54 1is no’F d1v1§1b1e by 5
the remainder is 4
divfive(53)
53 is not divisible by 5
the remainder is 3

divfive(52)
52 is not divisible by 5
the remainder 1is 2
divfive(51)
51 is not divisible by 5
the remainder is 1

27

d |Vf|V€() - VerSIOn 1 This version is to show |

that you can have as

many elif-clauses as

def divfive(d): # version 1 you need.

rem =d % 5
if rem ==

print(d, 'is not divisible by 5')
print('the remainder is 1'")

elif rem ==
print(d, 'is not divisible by 5')
print('the remainder is 2')

elif rem ==
print(d, 'is not divisible by 5')
print('the remainder is 3')

elif rem ==
print(d, 'is not divisible by 5')
print('the remainder is 4')

else:

- print(d, 'is divisible by 5") -

This version is to

divfive() - version 2 show that you can

have no else-clause
at all if you don't
need it.

def divfive(d): # version 2
rem =d % 5
if rem ==
print(d, 'is divisible by 5')
elif rem == 1:
print(d, 'is not divisible by 5')
print('the remainder is 1'")

elif rem == 2:
print(d, 'is not divisible by 5')
print('the remainder is 2'")

elif rem ==
print(d, 'is not divisible by 5')
print('the remainder is 3'")

elif rem == 4:
print(d, 'is not divisible by 5')

- print('the remainder is 4'")

leflVE() - VerS[On 3 This version is to

show that you can
have no elif-clauses
at all if you don't
need them.

def divfive(d): # version 3

rem =d % 5
© This . :

if rem ==
becomes >

print(d, 'is divisible by 5')

an ordinary
if-else else:
kstatement. print(d, 'is not divisible by 5')

print('the remainder is', rem)

You should convince yourself that all these three
versions produce exactly the same result.

More Prcgrammmg Example

Task: BMI and Weight Status @

“**Write a function bmi_and_status() that

> receives weight (in kg) and height (in meters) as
parameters

» computes the body-mass index (BMI) and returns
the BMI and weight status.

BMI and Weight Status - Idea

* Given the weight (in kilograms) and the height (in meters)
of a person, the Body-Mass Index (BMI) of the person can
be computed by the formula:

weight
BMI = ; ;
[(height) X (height) }

* The Weight Status of a person is categorized by the BMI as

ollows: - I N

BMI < 18.5 Underweight
18.5 <BMI < 25.0 Normal
25.0<BMI < 30.0 Overweight

_ BMI > 30.0 Obese m

BMI and Weight Status — Algorithm
“/ |

BMI < 18.5 Underweight
18.5 <BMI < 25.0 Normal Compute BMI
25.0<BMI < 30.0 Overweight I
BMI > 30.0 Obese) r\:\:iséi:\fvuesight"
F

Here, it's certain that

BMI > 18.5 wstatus =

11 11} 9
normal
Here, it's certain that i .

BMI > 25.0 =

S
overweight
F

Here, it's certain that
BMI > 30.0 wstatus =

"obese"

BMI and Weight Status — Python Code : Version 1

J A
Compute BMI
def bmi_and_status(weight, height):
wstatus =

"underweight” bmi = weight/(height*height)

if bmi < 18.5:

wstatus =

‘normal" |~ wstatus = "underweight”
. elif bmi < 25.0:
”oWZ:at?;t" Ll wstatus = "normal"
verwel . .
: : elif bmi < 30.0:
wetatus = wstatus = "overweight

“obese" else:

\\\‘ <i> 4/// wstatus = "obese"
return bmi, wstatus

BMI and Weight Status — another equivalent algorithm
om | weight Stus R

BMI < 18.5 Underweight ! Version 2
18.5 < BMI < 25.0 Normal Compute BMI
25.0<BMI < 30.0 Overweight -
BMI > 30.0 Obese BMI >= 30.0 v:{status"=
obese
Here, it's certain that F
BMI < 30.0 T -
BMI >= 25.0) wstatu§ .
overweight
Here, it's certain that ; .
BMI <25.0 =
BMI >= 18.5 wstatus = _
normal
Here, it's certain that j
BMI <18.5 wstatus =
"underweight"

BMI and Weight Status — Python Code : Version 2

-

ompute BMI
|def bmi_and status(weight, height):

wstatus = bmi = weight/(height*height)

"obese"

if bmi >= 30.0:

wstatus =

'overweight' [. wstétus = "obese
elif bmi »>= 25.0:
wstatus= || | wstzfltus = "overweight"
normal elif bmi »= 18.5:
F [1] [1]
wstatus = "normal

wstatus = .
"underweight" else:

(i) wstatus = "underweight"”
\\\‘ 4//¢ return bmi, wstatus

Next: Write a main routine to test it

def bmi_and_status(weight, height): # version 1 —
bmi = weight/(height*height)

if bmi < 18.5:

wstatus = "underweight”
elif bmi < 25.0:

wstatus = "normal”
elif bmi < 30.0:

wstatus = "overweight"
else:

wstatus = "obese"

return bmi, wstatus

---- main routine ----

weight = float(input("Enter your weight (in kilograms): "))
height = float(input("Enter your height (in meters): "))
bmi, status = bmi_and status(weight, height)

print(f"BMI is {bmi:.2f}, weight status: {status}")

Test the program, thoroughl

Enter your weight (in kilograms): 70
Enter your height (in meters): 2
BMI is 17.50, weight status: underweight

Try mPUt Enter your weight (in kilograms): 8@
values that Enter your height (in meters): 1.8
yie|d all BMI is 24.69, weight status: normal
possible \\ Enter your weight (in kilograms): 90
Enter your height (in meters): 1.8
OUtPUts BMI is 27.78, weight status: overweight
\ I Enter your weight (in kilograms): 100

Enter your height (in meters): 1.8
BMI is 30.86, weight status: obese

Enter your weight (in kilograms): 74
Enter your height (in meters): 2 -
BMI is 18.50, weight status: normal Also try some \

Enter your weight (in kilograms): 100 inputs that hit

Enter your height (in meters): 2 all the three
BMI is 25.00, weight status: overweight boundary cases

Enter your weight (in kilograms): 120 18.5, 25.0, 30.0
Enter your height (in meters): 2

BMI is 30.00, weight status: obese

Conclusion

* A basic selection control structure uses a single if- or if-else statement to
select one of two paths of execution.

A\ &

* A mutiple selection control structure selects one of three or more paths of
execution.

* To do a multiple selection in Python, we may use nested conditionals or
chained conditionals.

* We've got a nested conditional when we put one or more if or if-else
statements in a code block within another if or if-else statement. This
naturally gives rise to many different paths of execution.

* A chained conditional is the use of an orderly sequence of k conditions,
k > 2, to select one of k+1 code blocks to execute. In Python, a chained
conditional can be conveniently implemented by an if-elif-else statement.

References

> if-elif-else statement in Python:

o https://docs.python.org/3/reference/compound stmts.html#the-
if-statement

o https://docs.python.org/3/tutorial/controlflow.html#if-statements

* Good tutorials for multiple selections:

o http://interactivepython.org/runestone/static/thinkcspy/Selection
/Nestedconditionals.html

o http://interactivepython.org/runestone/static/thinkcspy/Selection
/Chainedconditionals.html

o https://www.programiz.com/python-programming/if-elif-else

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/tutorial/controlflow.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/Nestedconditionals.html
http://interactivepython.org/runestone/static/thinkcspy/Selection/Chainedconditionals.html
https://www.programiz.com/python-programming/if-elif-else

Major Revision History

* August 2016 — Chalermsak Chatdokmaiprai

o originally created for C#

*July 31, 2017 — Chalermsak Chatdokmaiprai
> adapted and enhanced for Python

Constructive comments or error reports on this set of slides would be
welcome and highly appreciated. Please contact Chalermsak.c@ku.ac.th

mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th

	Slide 1: Control Structure: Multiple Selections
	Slide 2: Outline
	Slide 3: Review : Basic Selections
	Slide 4: Introduction
	Slide 5: How to do multiple selections in Python
	Slide 6: Outline
	Slide 7: How nested conditionals are possible in Python
	Slide 8: Example in Python
	Slide 9: Nested conditionals start as just a single statement
	Slide 10: Flow-of-Control Example
	Slide 11
	Slide 12: Task: The maximum of three numbers
	Slide 13: The maximum of three numbers - Ideas
	Slide 14: Topmost level
	Slide 15: The function max_of_three() – Design
	Slide 16: The function max_of_three() – Version 1
	Slide 17: The function max_of_three() – Version 2
	Slide 18: The function max_of_three() – Version 3
	Slide 19: The function max_of_three() – Version 4
	Slide 20: Nammo Amitta Pythonic Buddha!
	Slide 21: Outline
	Slide 22: Chained Conditionals
	Slide 23: Example
	Slide 24: Chained conditionals in Python implemented by nested conditionals
	Slide 25: Chained conditionals in Python implemented by if-elif-else statements
	Slide 26: The flow charts of both implementations show that
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Task: BMI and Weight Status
	Slide 33: BMI and Weight Status - Idea
	Slide 34: BMI and Weight Status – Algorithm
	Slide 35: BMI and Weight Status – Python Code : Version 1
	Slide 36: BMI and Weight Status – another equivalent algorithm
	Slide 37: BMI and Weight Status – Python Code : Version 2
	Slide 38: Next: Write a main routine to test it
	Slide 39: Test the program, thoroughly
	Slide 40: Conclusion
	Slide 41: References
	Slide 42: Major Revision History

