
Control structure:
Repetition - Part 1

01204111 Computers and Programming

Chalermsak Chatdokmaiprai

Department of Computer Engineering
Kasetsart University

Cliparts are taken from http://openclipart.org Revised 2020-02-02

http://openclipart.org/

2

Outline
➢Repetition Control Flow

▪Task : Hello world n times
▪Definite loops – the for statement
▪The range() function

➢Programming Examples
▪A conversion table : Fahrenheit to Celsius
▪The factorial function

➢More About Strings
▪ String indexing
▪The len() function
▪ Strings are immutable
▪ For-loops with strings : String traversals

➢A Numerical Example : Average of Numbers

3

Fundamental Flow Controls

• Sequence

• Subroutine

• Selection (or Branching)

• Repetition (or Iteration or Loop)

We have already
learned and used

these three
control structures.

4

Schematic View of Flow Controls

Sequence

RepetitionSubroutine

Selection

5

Repetition Flow Control
•Computers are often used to do repetitive tasks
because humans don’t like to do the same thing
over and over again.

• In computer programs, repetition flow control is
used to execute a group of instructions repeatedly.

•Repetition flow control is also called iteration or
loop.

• In Python, repetition flow control can be expressed
by a for-statement or a while-statement
that allow us to execute a code block repeatedly.

6

Task: Hello World n times

•Write a function hello(n) to write Hello World!
n times, where n  0 is the input. After that, write
Goodbye! once.

>>> hello(3)
Hello World!
Hello World!
Hello World!
Goodbye!
>>> hello(0)
Goodbye!
>>> hello(1)
Hello World!
Goodbye!

>>> hello(10)
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Goodbye!

7

The function hello(n) – Steps

❖ hello(n):
➢receive n as its parameter.
➢repeat n times:

• write 'Hello World!'
➢write 'Goodbye!'

def hello(n):

print('Goodbye!')

for i in range(n):
print('Hello World!')

How can we do

this repetition in

Python?

8

Definite Loops: the for Statement

•variable after for is called the loop index.
It takes on each successive value in sequence in
the order they appear in the sequence.

•The sequence can be one of the Python
sequence objects such as a string, a list, a tuple,
or a range of integers from the built-in function
range().

Python
Syntax

for variable in sequence :

code_block

9

How the for statement works

more items in
sequence

?

F

T

code_block

variable = next item

for variable in sequence :

code_block

The number of times

the code_block is

executed is precisely

the number of items

in the sequence.

10

Hands-on Example

>>> my_string = 'python'
>>> k = 0
>>> for c in my_string:

k = k + 1
print(f'round {k} : c is {c}')

round 1 : c is p
round 2 : c is y
round 3 : c is t
round 4 : c is h
round 5 : c is o
round 6 : c is n

The variable my_string
produces the sequence

'p', 'y', 't', 'h', 'o', 'n'.

The variable c is

the loop index.

The code block to

be repeated for
each value of c.

Output

11

Hands-on Example

>>> k = 0
>>> for i in [10,-3.5,'py',True]:

k = k + 1
print(f'round {k} : i is {i}')

round 1 : i is 10
round 2 : i is -3.5
round 3 : i is py
round 4 : i is True

This list object

produces the sequence
10, -3.5, 'py', True

The variable i is

the loop index.

The code block

to be repeated for
each value of i.

Output

Don't worry about list objects now.
We'll study them in detail in the near future.

12

Hands-on Example

>>> k = 0
>>> for i in range(4):

k = k + 1
print(f'round {k} : i is {i}')

round 1 : i is 0
round 2 : i is 1
round 3 : i is 2
round 4 : i is 3

The object range(4)
generates the sequence

0, 1, 2, 3

The variable i is

the loop index.

The code block

to be repeated for
each value of i.

Output

13

The range() function

• In its most general form, the range() function
takes three integer arguments: start, stop,
and step.

•range(start, stop, step) produces the
sequence of integers:

start, start + step, start + 2*step, start + 3*step, …

Python
Syntax

range(start, stop, step)

If step is positive,

the last element is

the largest integer
less than stop.

If step is negative,

the last element is

the smallest integer
greater than stop.

14

range(start, stop, step)

. . .

stop start

-step -step -step -step

values in the sequence

(in right-to-left order)

-step

. . .

start stop

+step +step +step +step

values in the sequence

(in left-to-right order)

+step

When step

is positive

When step

is negative

15

Hands-on Example
>>> type(range(-4,14,3))
<class 'range'>
>>> range(-4,14,3)
range(-4, 14, 3)
>>> list(range(-4,14,3))
[-4, -1, 2, 5, 8, 11]
>>> list(range(14,-4,-3))
[14, 11, 8, 5, 2, -1]
>>> list(range(5,3,1))
[]
>>> list(range(3,5,-1))
[]
>>> list(range(3,3,2))
[]
>>> list(range(3,3,-2))
[]
>>>

This doesn't show the sequence
generated by range().

To see the type of
object range()

Use the built-in function list() to
show the sequence.

Try a negative step.

produces the empty sequence
because step is positive and start
is not less than stop.

produces the empty sequence
because step is negative and
start is not greater than stop.

Notice that in all cases,
the stop value will never appear
in the generated sequence.

Notice that in all cases,
the stop value will never appear
in the generated sequence.

16

Hands-on Example : start and step can be omitted

>>> list(range(3,8,1))
[3, 4, 5, 6, 7]
>>> list(range(3,8))
[3, 4, 5, 6, 7]
>>> list(range(0,5))
[0, 1, 2, 3, 4]
>>> list(range(5))
[0, 1, 2, 3, 4]
>>> for i in range(4):

print('i is', i)

i is 0
i is 1
i is 2
i is 3

If step is omitted,
the default step is 1.

If start is also omitted,
the default start is 0.

So range(4) is the
same as range(0,4)
and range(0,4,1).

18

Task: Print a Fahrenheit-to-Celsius Table

•Write a function to print
a Fahrenheit-to-Celsius
conversion table from
212 F to 32 F,
decremented in each
step by 20 F.

>>> fah_to_cel()
Fahrenheit Celsius
---------- -------

212 100.0
192 88.9
172 77.8
152 66.7
132 55.6
112 44.4
92 33.3
72 22.2
52 11.1
32 0.0

---------- -------

19

Print a Fahrenheit-to-Celsius Table - Ideas

➢ The formula to convert fahrenheit to celsius:

➢ We’ll write a function fah_to_cel() to do the
task.

➢ We’ll use a for-loop in which the loop index holds
the fahrenheit values.

➢ The for-loop will iterate over a sequence from 212
downto 32 generated by range().

celsius = (5/9)*(fahrenheit-32)

20

First, let's experiment with the range of
Fahrenheit values:

>>> list(range(212,32,-20))

[212, 192, 172, 152, 132, 112, 92, 72, 52]

>>> list(range(212,31,-20))

[212, 192, 172, 152, 132, 112, 92, 72, 52, 32]

>>>

32 is missing!

We should use one
less than 32 so that
32 can be included
in the sequence

So now we've got
a correct sequence
running from 212
downto 32.

21

The function fah_to_cel()
def fah_to_cel():

print(f"{'Fahrenheit':>12}{'Celsius':>12}")

print(f"{'----------':>12}{'-------':>12}")

for fah in range(212,31,-20):

cel = (5/9)*(fah-32)

print(f"{fah:12}{cel:12.1f}")

print(f"{'----------':>12}{'-------':>12}")

>>> fah_to_cel()
Fahrenheit Celsius
---------- -------

212 100.0
192 88.9
172 77.8
152 66.7
132 55.6
112 44.4
92 33.3
72 22.2
52 11.1
32 0.0

---------- -------

Do those print statements above

still puzzle you?

22

def test_print():
print('12345678901234567890')
print(f"{'python':>10}{'idle':>10}")
print(f"{'python':<10}{'idle':<10}")
print(f"{'python':^10}{'idle':^10}")
cel = 32/3
print('12345678901234567890')
print(f"{cel:>10.1f}{cel:>10.3f}")
print(f"{cel:<10.1f}{cel:<10.3f}")
print(f"{cel:^10.1f}{cel:^10.3f}")
print('12345678901234567890')

If so, let's do some experiments to
demystify them:

>>> test_print()
12345678901234567890

python idle
python idle
python idle

12345678901234567890
10.7 10.667

10.7 10.667
10.7 10.667

12345678901234567890
>>>

Right-justification is the
default for numbers, so
the symbol > can be
omitted here.

Left-justification is the
default for strings, so
the symbol < can be
omitted here.

23

>>> fah_to_cel(step=-20,start=100,end=0)
Fahrenheit Celsius
---------- -------

100 37.8
80 26.7
60 15.6
40 4.4
20 -6.7

---------- -------
>>>

Next: Make fah_to_cel()more general

>>> fah_to_cel(32,100,20)
Fahrenheit Celsius
---------- -------

32 0.0
52 11.1
72 22.2
92 33.3

---------- -------
>>> fah_to_cel(100,32,-20)

Fahrenheit Celsius
---------- -------

100 37.8
80 26.7
60 15.6
40 4.4

---------- -------
>>>

❖ Let's add three parameters:
start, end, and step to control
the Fahrenheit values to be
printed.

24

The generalized fah_to_cel()

def fah_to_cel(start, end, step):
print(f"{'Fahrenheit':>12}{'Celsius':>12}")
print(f"{'----------':>12}{'-------':>12}")

for fah in range(start, end, step):
cel = (5/9)*(fah-32)
print(f"{fah:12}{cel:12.1f}")

print(f"{'----------':>12}{'-------':>12}")

26

Task: Computing the factorial

❖ Suppose you have five pens of different colors to
give to five kids. How many ways are there to
give those five pens to those kids?

o Answer: 5*4*3*2*1 = 120 ways

❖ More generally, the factorial is defined as a
function of nonnegative integers (0, 1, 2, …) such
that:

This value is called the factorial of 5, or simply 5!

n! = n(n-1)(n-2)…(2)(1) when n > 0,

and 0! = 1

27

Task: Computing the factorial

❖ Let's write a Python function factorial(n)
to compute and return the value of n!

>>> factorial(5)
120
>>> factorial(3)
6
>>> factorial(1)
1
>>> factorial(0)
1
>>> factorial(10)
3628800
>>>

28

factorial(n): An Accumulating Algorithm

❖How do we calculate 3! and 5! ?

o 3! = 3*2*1 = 6

o 5! = 5*4*3*2*1 = 120

❖ But the function factorial(n) must
work for every value of n, so we'll devise
an accumulating algorithm that works for
every value of n.

29

factorial(n): An Accumulating Algorithm

❖How can we compute 4! by accumulating
results?

o Start at 1
o Take that 1, then 1*4 = 4
o Take that 4, then 4*3 = 12
o Take that 12, then 12*2 = 24
o Done!

o result = 1
o result = result*4
o result = result*3
o result = result*2
o return result

Let's use a
variable result

to hold the

accumulating

result.

Then, translate

our algorithm into

Python statements

30

factorial(n): An Accumulating Algorithm
o result = 1

o result = result*4

o result = result*3

o result = result*2

o return result

result = result*4

result = result*3

result = result*2

Notice that for 4!
this calculation is repeated
3 times through the sequence

4, 3, 2

o result = 1

o result = result*n

o result = result*(n-1)

o result = result*(n-2)

o ...

o result = result*2

o return result

result = result*n

result = result*(n-1)

result = result*(n-2)

...

result = result*2

Therefore for n!
this calculation is repeated
n-1 times through the sequence

n, n-1, n-2 …, 3, 2

for i in range(n,1,-1):
result = result*i

This repetition is

exactly the for-loop:

31

factorial(n): from algorithm to code
o result = 1

o result = result*n

o result = result*(n-1)

o result = result*(n-2)

o ...

o result = result*2

o return result

result = result*n

result = result*(n-1)

result = result*(n-2)

...

result = result*2

def factorial(n):

result = 1

for i in range(n,1,-1):

result = result*i

return result

for i in range(n,1,-1):
result = result*i

And it's

all done!

32

Wait a minute!
Does it work when n = 0 or 1 ?
def factorial(n):

result = 1

for i in range(n,1,-1):

result = result*i

return result

for i in range(n,1,-1):
result = result*i

>>> list(range(0,1,-1))
[]
>>> list(range(1,1,-1))
[]

When n = 0 or 1, the range() in
the for-statement becomes
range(0,1,-1) or range(1,1,-1),
respectively.

>>> for i in []:
print("Yappadapadoo")

>>>

And this is what happens
when looping through
the empty sequence.

What are range(0,1,-1) and
range(1,1,-1)?

Can you explain why?

Statements inside the loop
don't get executed at all.

Now, can you explain why our factorial(n)
returns correct results when n = 0 or 1 ?

34

String Indexing:
Accessing Characters in a String

➢ A Python string is an object of type str, which
represents a sequence of characters.

➢ We can access each individual character in a
string with an expression (type int) in the
bracket operator []. The expression in the
bracket is called a string index.

str_object[expression]

35

String Indexing:
Accessing Characters in a String

➢ The indexes of characters in a string are
numbered from the left, starting with 0.

>>> greet = 'Hello Dan'
>>> greet
'Hello Dan'
>>> greet[0]
'H'
>>> greet[4]
'o'
>>> print(greet[1], greet[4]+greet[8])
e on

>>> type(greet)
<class 'str'>
>>> type(greet[4])
<class 'str'>

H e l l o D a n

0 2 3 4 5 6 7 81

Both of them
are of type str.

greet

36

String Indexing:
Accessing Characters Within a String

>>> greet = 'Hello Dan'
>>> letter = greet[1]
>>> letter
'e'
>>> k = 1
>>> greet[k]
'e'
>>> greet[k+5]
'D'
>>> greet[2*k+5]
'a'
>>> greet[1.5]
TypeError: string indexes must be integers

>>> 'python'[0]
'p'
>>> "python"[3]
'h'
>>> 'python'[k+2]
'h'

H e l l o D a n

0 2 3 4 5 6 7 81

greet[1] is a string object so it can
be assigned to a variable.

String indexes can be any expressions of type int.

Indexing also works
on string literals.

greet

37

>>> greet = 'Hello Dan'
>>> len(greet)
9
>>> len("I'm happy.")
10
>>> greet + 'ny!'
'Hello Danny!'
>>> len(greet + 'ny!')
12

>>> length = len(greet)
>>> length
9
>>> lastchar = greet[length]
IndexError: string index out of range
>>> lastchar = greet[length-1]
>>> lastchar
'n'

H e l l o D a n

0 2 3 4 5 6 7 81

The built-in function len() returns
the length of its string argument.

Correct index of
the last character.

The last index of
greet is 8, not 9.

greet

Length of a String: The Built-in Function
len()

38

>>> greet = 'Hello Dan'
>>> greet[-1]
'n'
>>> greet[-2]
'a'
>>> greet[-9]
'H'
>>> greet[-len(greet)]
'H'

>>> length = len(greet)
>>> greet[length-1]
'n'
>>> greet[length-2]
'a'
>>> greet[0]
'H'
>>> greet[length-len(greet)]
'H'

last character

greet

Indexing from the right side: Negative indexes

0 2 3 4 5 6 7 81

H e l l o D a n

-9 -7 -6 -5 -4 -3 -2 -1-8You can use negative

indexes to index

backward from the

end of the string.

second-last
character

first character

Also first character
since len(greet) is 9.

last character

second-last
character

Also first character since
length-len(greet) is 0.

Notice the positive indexes that
refer to the same positions as
their negative counterparts.

first character

39

String Objects Are Immutable.
➢ Python string objects are immutable. That means the

characters within a string object cannot be changed.

>>> greet = 'Hello Dan'

>>> greet[6] = 'J'

TypeError: 'str' object does not support item assignment

>>> 'Hello Dan'[6] = 'J'

TypeError: 'str' object does not support item assignment

>>> greet

'Hello Dan'

>>> greet = greet + 'ny'

>>> greet

'Hello Danny'
Note that the variable greet has changed its binding

twice by assignment, but the two string objects,
'Hello Dan' and 'Hello Danny', can never be changed.

A new string object 'Hello Danny'
is created and then assigned to
the variable greet.

A new string object 'Hello Dan' is created
and then assigned to the variable greet.

Expect to change Dan to Jan

greet and the string 'Hello Dan' remain unchanged.

This doesn’t work either.

41

String Traversal
➢ Lots of computations involve processing a string

one character at a time in this pattern:

1. Get a string
2. Repeat from the beginning until the end of the string:

▪ Get next character
▪ Do something with the character

➢ This pattern of processing is called a traversal.

➢ In Python, one way to implement a string
traversal is by using a for loop.

42

Traversal Example: Spreading Out a String

➢ We want to write a program that prints each
character in a string, one per line, enclosed in ().

text = 'a dog'
c = text[0]; print(f'/{c}/')
c = text[1]; print(f'/{c}/')
c = text[2]; print(f'/{c}/')
c = text[3]; print(f'/{c}/')
c = text[4]; print(f'/{c}/')

Without using a loop, we may
write a python program to
traverse the string assigned
to a variable text like this:

The symbol ; allows two or more
statements on the same line

/a/
/ /
/d/
/o/
/g/

Output

43

Traversal Example: Spreading Out a String

text = 'a dog'
c = text[0]; print(f'/{c}/')
c = text[1]; print(f'/{c}/')
c = text[2]; print(f'/{c}/')
c = text[3]; print(f'/{c}/')
c = text[4]; print(f'/{c}/')

Without using a loop, we may
write a python program to
traverse the string assigned
to a variable text like this:

But since a string is a sequence type
like a range() object, we can use
for statements with strings in a
similar way:

text = 'a dog'
for c in text:

print(f'/{c}/')

Both work

effectively

the same!
The symbol ; allows two or more
statements on the same line

44

Spreading Out a String : Generalization

text = 'a dog'
for c in text:

print(f'/{c}/')

>>> text = 'a dog'
>>> for c in text:

print(f'/{c}/')

/a/
/ /
/d/
/o/
/g/

Test it.

def spread_str(text):
"""print text,
one char per line within ()"""

for c in text:
print(f'/{c}/')

Generalize and encapsulate
it into a function.

>>> spread_str('a')
/a/
>>> spread_str('')
>>>
>>> dino = 'Rex'
>>> spread_str("T'" + dino)
/T/
/'/
/R/
/e/
/x/

Test it

again.

No output
Why?

45

>>> s = 'a dog'

>>> list(range(len(s)))

[0, 1, 2, 3, 4]

String Traversal: Looping Over String Indexes
These two blocks of code work effectively the same.

text = 'a dog'
c = text[0]; print(f'/{c}/')
c = text[1]; print(f'/{c}/')
c = text[2]; print(f'/{c}/')
c = text[3]; print(f'/{c}/')
c = text[4]; print(f'/{c}/')

text = 'a dog'
print(f'/{text[0]}/')
print(f'/{text[1]}/')
print(f'/{text[2]}/')
print(f'/{text[3]}/')
print(f'/{text[4]}/')

This suggests that we can
also do this task by looping
over the string indexes.

Recall that the indexes of
any string s are in the range

0, 1, 2, …, len(s)-1

def spread_str(text):
"""print text,
one char per line within ()"""
for i in range(len(text)):

print(f'/{text[i]}/')

Thus another version
of spread_str(text)

46

Two equivalent implementations

def spread_str(text):
"""print text, one char per line within ()"""
for i in range(len(text)):

print(f'/{text[i]}/')

def spread_str(text):
"""print text, one char per line within ()"""
for c in text:

print(f'/{c}/')

Which one do you prefer?Which one do you prefer?

47

Traversal Example: Counting a Character

➢ We want to write a program that counts the
number of times a character appears in a string.

text = 'pete'

count = 0

c=text[0]; if c=='e': count = count+1

c=text[1]; if c=='e': count = count+1

c=text[2]; if c=='e': count = count+1

c=text[3]; if c=='e': count = count+1

print(count)

Suppose we want to count the
number of 'e' in a string 'pete',
we may write a program like this:

This box traverses the string
from left to right. If the current
character is 'e', the variable
count will be incremented by 1.

for c in text:
if c == 'e':

count = count+1

This repetition
is exactly the

for loop:

48

Counting a Character : Generalization
text = 'pete'

count = 0

for c in text:
if c == 'e':

count = count+1
print(count)

def count_char(char, text):
"""counts the no. of times
'char' appears in 'text'"""
count = 0
for c in text:

if c == char:
count = count+1

return count

Generalize and encapsulate
it into a function.

>>> count_char('a', 'anaconda')
3
>>> count_char('x', 'python')
0
>>> count_char(' ', 'I am happy')
2
>>> count_char(text='python', char='y')
1

Test it.

49

Counting a Character : An Alternative
def count_char(char, text):

"""counts the no. of times

'char' appears in 'text'"""

count = 0

for c in text:

if c == char:

count = count+1

return count

def count_char(char, text): #version 2

"""counts the no. of times

'char' appears in 'text'"""

count = 0

for i in range(len(text)):

if text[i] == char:

count = count+1

return count

Alternatively, we may
loop over string indexes
with the same result.

Which one,
do you

think, is
simpler?

51

Task: Average of Numbers
❖Write a program to read n numbers and

calculate their average.

❖ The inputs of the program are the values of n
and all of the n numbers. n is a positive integer
and each number is a float number.

How many numbers? 4
Enter number #1: 12
Enter number #2: 11.5
Enter number #3: 13
Enter number #4: 10.5
The average of 4 number(s) is 11.75

Sample
Run

Sample
Run

How many numbers? 0
Nothing to do. Bye!

52

Average of Numbers – Topmost Steps

❖ Algorithm of the Main Routine:

▪ Read the value of n, making sure that n > 0

▪ Read each of the n numbers and calculate the average.

▪ Output the average.

import sys

---- main ----

n = int(input('How many numbers? '))

if n <= 0:

print('Nothing to do. Bye!')

sys.exit()

avg = average(n)

print(f'The average of {n} number(s) is {avg}')

Translate it

into Python

We'll write the function
average() to do the

read/calculate task.

53

❖ Algorithm of average(n):
▪ Gets the count of numbers n as its parameter.
▪ Reads each of the n numbers and calculate the sum:

sum = number1 + number2 + … + numbern
▪ Calculates the average with:

average = sum / n
▪ Returns the average.

def average(n):

return sum/n

?

Translate it

into Python

A new variable average is not needed

The hard part to be
figured out next

The function average(n)

54

Accumulating Algorithm Once Again
▪ Reads each of the n numbers and calculate the sum:

sum = number1 + number2 + … + numbern

➢ sum = 0

➢ Read number1; sum = sum + number1
➢ Read number2; sum = sum + number2
➢ ...

➢ Read numbern; sum = sum + numbern

Transform the sum formula into

an accumulating algorithm.

sum = 0

for i in range(n):

number = float(input(f'Enter number #{i+1}: '))

sum = sum + number

Then translate it

into Python

➢ sum = 0

➢ Repeat n times:

• Read a new number into
the variable number

• sum = sum + number
Then make it a loop of n iterations.

Notice that only one variable number

is enough for all numbers.

55

average()- Complete
❖ Algorithm of average():

▪ Gets the count of numbers n as its parameter.
▪ Reads each of the n numbers and calculate the sum:

sum = number1 + number2 + … + numbern
▪ Calculates the average with:

average = sum / n
▪ Returns the average.

def average(n):

return sum/n

sum = 0

for i in range(n):

number = float(input(f'Enter number #{i+1}: '))

sum = sum + number

Translate it

into Python

56

Average of Numbers – Complete Program
import sys

def average(n):

sum = 0

for i in range(n):

number = float(input(f'Enter number #{i+1}: '))

sum = sum + number

return sum/n

---- main ----

n = int(input('How many numbers? '))

if n <= 0:

print('Nothing to do. Bye!')

sys.exit()

avg = average(n)

print(f'The average of {n} number(s) is {avg}')

def average(n):

sum = 0

for i in range(n):

number = float(input(f'Enter number #{i+1}: '))

sum = sum + number

return sum/n

How many numbers? 4
Enter number #1: 12
Enter number #2: 11.5
Enter number #3: 13
Enter number #4: 10.5
The average of 4 number(s) is 11.75

How many numbers? 0
Nothing to do. Bye!

57

Conclusion

• In computer programs, repetition flow control (also
called iteration or loop) is used to execute a group
of instructions repeatedly.

• In Python, a repetition flow control can be
expressed by a for-statement which allows us to
execute a code block a definite number of times.

•We can use a for-statement to iterate over any of
the Python sequence objects such as a range of
integers, a string, a list, etc.

58

References
•Think Python

◦ http://greenteapress.com/thinkpython2/thinkpython2.pdf

•Official reference on the for statement:
◦ https://docs.python.org/3/reference/compound_stmts.html#the-

for-statement

•Good tutorials for for-loops, range(), and string indexing:
◦ https://docs.python.org/3/tutorial/controlflow.html#for-

statements
◦ https://docs.python.org/3/tutorial/controlflow.html#the-range-

function
◦ https://docs.python.org/3/tutorial/introduction.html#strings
◦ http://www.python-course.eu/python3_for_loop.php

http://greenteapress.com/thinkpython2/thinkpython2.pdf
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/introduction.html
http://www.python-course.eu/python3_for_loop.php

59

Syntax Summary I

for variable in sequence :

code_block

range(start, stop, step)

for statement

The range() function

sequence may be any Python
sequence object such as a string,

a range of integers, a list, etc.

generates successive integers:
start, start + step, start + 2*step, …

range(start, stop)

range(stop)

exactly the same as
range(start, stop, 1)

exactly the same as
range(0, stop, 1)

If step is positive,
the last element is
the largest integer

less than stop.

If step is negative,
the last element is

the smallest integer
greater than stop.

60

Syntax Summary II

list(range(start, stop, step))

string indexingThe list() function

Returns a list object defined by the
successive integers generated by range()

str[0]

len(string)

first character

Returns the length of
its string argument

list(range(start, stop))

list(range(stop))

The len() function

str[i]

str[len(str)-1]

str[-1]

str[-2]

str[-len(str)]

(ith-1) character

last
character

last character

second-last
character

first
character

61

Major Revision History
• September, 2017 – Chalermsak Chatdokmaiprai

◦ First release

•March 16, 2019 – Chalermsak Chatdokmaiprai
◦ Fixed minor typos

• February 2, 2020 – Chalermsak Chatdokmaiprai
◦ improved explanations here and there

mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th
mailto:Chalermsak.c@ku.ac.th

	Slide 1: Control structure: Repetition - Part 1
	Slide 2: Outline
	Slide 3: Fundamental Flow Controls
	Slide 4: Schematic View of Flow Controls
	Slide 5: Repetition Flow Control
	Slide 6: Task: Hello World n times
	Slide 7: The function hello(n) – Steps
	Slide 8: Definite Loops: the for Statement
	Slide 9: How the for statement works
	Slide 10: Hands-on Example
	Slide 11: Hands-on Example
	Slide 12: Hands-on Example
	Slide 13: The range() function
	Slide 14
	Slide 15: Hands-on Example
	Slide 16: Hands-on Example : start and step can be omitted
	Slide 17
	Slide 18: Task: Print a Fahrenheit-to-Celsius Table
	Slide 19: Print a Fahrenheit-to-Celsius Table - Ideas
	Slide 20: First, let's experiment with the range of Fahrenheit values:
	Slide 21: The function fah_to_cel()
	Slide 22: If so, let's do some experiments to demystify them:
	Slide 23: Next: Make fah_to_cel() more general
	Slide 24: The generalized fah_to_cel()
	Slide 25
	Slide 26: Task: Computing the factorial
	Slide 27: Task: Computing the factorial
	Slide 28: factorial(n): An Accumulating Algorithm
	Slide 29: factorial(n): An Accumulating Algorithm
	Slide 30: factorial(n): An Accumulating Algorithm
	Slide 31: factorial(n): from algorithm to code
	Slide 32: Wait a minute! Does it work when n = 0 or 1 ?
	Slide 33
	Slide 34: String Indexing: Accessing Characters in a String
	Slide 35: String Indexing: Accessing Characters in a String
	Slide 36: String Indexing: Accessing Characters Within a String
	Slide 37
	Slide 38
	Slide 39: String Objects Are Immutable.
	Slide 40
	Slide 41: String Traversal
	Slide 42: Traversal Example: Spreading Out a String
	Slide 43: Traversal Example: Spreading Out a String
	Slide 44: Spreading Out a String : Generalization
	Slide 45: String Traversal: Looping Over String Indexes
	Slide 46: Two equivalent implementations
	Slide 47: Traversal Example: Counting a Character
	Slide 48: Counting a Character : Generalization
	Slide 49: Counting a Character : An Alternative
	Slide 50
	Slide 51: Task: Average of Numbers
	Slide 52: Average of Numbers – Topmost Steps
	Slide 53
	Slide 54: Accumulating Algorithm Once Again
	Slide 55: average()- Complete
	Slide 56: Average of Numbers – Complete Program
	Slide 57: Conclusion
	Slide 58: References
	Slide 59: Syntax Summary I
	Slide 60: Syntax Summary II
	Slide 61: Major Revision History

