
Lesson 3 – Testing in Software Life Cycles

Uwe Gühl
Winter 2015 / 2016

Software Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 2

Contents

● Testing in Software Life Cycles (1/2)
– Definitions

● Software quality
● ISO/IEC 9126 Quality Model
● Verification and Validation
● COTS (Commercial Off-The-Shelf software)

– Software Development Models
● Sequential Development Model → Waterfall / V-Model
● Iterative-incremental Development Models
● Testing within a Life Cycle Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 3

Contents

● Testing in Software Life Cycles (2/2)
– Test Levels

● Component testing
● Integration testing
● System testing
● Acceptance testing

– Test Types
● Functional Testing
● Non-Functional Testing
● Structural Testing
● Re-testing and Regression Testing

– Maintenance Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 4

Definitions
Software quality

Discussion: What means (software) quality?
● "everyone feels they understand it" (Scott Pressman)
● Software quality characteristics (Steve McConnell)

– external - those parts of a product that face its users,

– internal - those that do not
● "a product's quality is a function of how much it

changes the world for the better” (Tom DeMarco)
● "Quality is value to some person" (Gerald Weinberg)

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 5

● ISO/IEC 9126 Software engineering – Product
quality [Wik16]
– was an international standard for the evaluation of

software quality – focusing on the product.
– tries to develop a common understanding of the

project's objectives and goals.
– applies to characteristics to evaluate in a specific

degree, how much of the agreements got fulfilled
→ Conformance level

● Hint: Since 2011 there is a successor available:
ISO 25010-2011 has eight product quality characteristics
(in contrast to ISO 9126's six), and 39 sub-characteristics

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 6

Definitions
ISO/IEC 9126 Quality Model

1 Functionality

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 7

Definitions
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality

1.1.Suitability
Does the software the specified
tasks?

1.2.Accuracy
E.g. the needed precision of results

1.3.Interoperability
Cooperates with specified systems

1.4.Compliance
...with conditions / regulations

1.5.Security
No unauthorized access possible

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 8

1 Functionality - A set of attributes that bear on
the existence of a set of functions and their
specified properties. The functions are those
that satisfy stated or implied needs.
– Suitability: Does the software the specified tasks?
– Accuracy: e.g. the needed precision of results
– Interoperability: cooperates with specified systems
– Compliance: ...with conditions / regulations
– Security: No unauthorized access possible

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 9

Definitions
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality 2.1.Maturity
concerns frequency of failure of the
software.

2.2.Fault Tolerance
Ability to withstand (and recover) from
failure like unexpected inputs.

2.3.Recoverability
Ability to recover a failed system
including data / network

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 10

2 Reliability - A set of attributes that bear on the
capability of software to maintain its level of
performance under stated conditions for a
stated period of time.
– Maturity: Minor breakdowns because of defects
– Recoverability: If there is a breakdown, how long

does it need to recover – how much time / effort is
needed (including data!)?

– Fault Tolerance: Can the system handle
unexpected inputs?

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 11

Definitions
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality

3.1.Learnability
Learning effort for different users

3.2.Understandability
How easy could systems functions be
understood?

3.3.Operability:
To keep a system in in a safe and
reliable functioning condition

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 12

3 Usability - A set of attributes that bear on the
effort needed for use, and on the individual
assessment of such use, by a stated or implied
set of users.
– Learnability: Effort to learn how to use a software
– Understandability
– Operability: To keep a system in a safe and reliable

functioning condition

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 13

Definitions
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality4.1.Time Behaviour
Response time, processing time,
throughput

4.2.Resource Behaviour:
Usage of RAM, disk space, network,
energy

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 14

4 Efficiency - A set of attributes that bear on the
relationship between the level of performance
of the software and the amount of resources
used, under stated conditions.
– Time Behaviour: Response time, processing time,

throughput
– Resource Behaviour: Usage of RAM, disk space,

energy

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 15

Definitions
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality
5.1.Stability:

Capability to avoid unexpected effects
from modifications of the system

5.2.Analyzability:
Ability to identify the root cause of a
failure, e.g. with system logs

5.3.Changeability:
Effort to do changes at the system

5.4.Testability:
Effort needed to test a system
change.

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 16

5 Maintainability - A set of attributes that bear on
the effort needed to make specified
modifications.
– Stability: What happens after a power cut?
– Analyzability: Monitoring the system
– Changeability: Changes at runtime possible?
– Testability: E. g. is it possible to reproduce

activities?

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 17

Definitions
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality

6.1.Installability:
Effort to install a system in a specific
environment

6.2.Replaceability:
How easy is it to exchange a given
software component within a
specified environment (compatibility
of data)

6.3.Adaptability:
Ability of the system to change to new
specifications or to move to another
operating environment

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 18

6 Portability - A set of attributes that bear on the
ability of software to be transferred from one
environment to another.
– Installability: Effort to install a system in a specific

environment
– Replaceability: With a specific different software

(compatibility of data)
– Adaptability: E. g. move on another operating

system

Definitions
ISO/IEC 9126 Quality Model

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 19

Definitions
Verification & Validation

● Verification
Did we build the product right?
Verification is defined as the "demonstration of consistency,
completeness, and correctness of the software at each stage
and between each stage of the development life cycle."
[RBC82]

● Validation
Did we build the right product?
Validation is the "determination of the correctness of the final
program or software produced from a development project with
respect to the user needs and requirements. Validation is
usually accomplished by verifying each stage of the software
development life cycle." [RBC82]

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 20

Definitions
Commercial Off-The-Shelf (COTS)

● Commercial Off-The-Shelf (COTS) software
[ISTQB-GWP15]

A software product that is
– developed for the general market, i.e. for a large

number of customers,
– delivered to many customers in identical format.

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 21

Software Development Models
Sequential Development Model

● Waterfall model

Analysis

Design

Realization

Test

Deployment and
maintenance

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 22

Software Development Models
Sequential Development Model

● V-Model following ISTQB

Requirements Analysis

System Design

Architecture
Design

Module Design

Acceptance Testing

System Testing

Integration Testing

Component (Unit)
Testing

Coding

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 23

Software Development Models
Sequential Development Model

● V-Model following ISTQB

Requirements Analysis

System Design

Architecture
Design

Module Design

Acceptance Testing

System Testing

Integration Testing

Component (Unit)
Testing

Coding

● Validation
Test object with
test specifications
against test basis

● Verification
Derived requirements
against requirements

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 24

Software Development Models
Sequential Development Model

● V-Model following ISTQB – including test
preparation activities

Requirements Analysis

System Design

Architecture
Design

Module Design

Acceptance Testing

System Testing

Integration Testing

Component (Unit)
Testing

Coding

Acceptance Test Design

System Test Design

Integration Test Design

Component (Unit)
Test Design

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 25

Software Development Models
Iterative-incremental Development Models

● Rational Unified Process
PhasesSub

processes

Iterations

Image source: http://upload.wikimedia.org/wikipedia/commons/0/05/Development-iterative.gif

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 26

Software Development Models
Iterative-incremental Development Models

● Agile Software Development
● Agile manifesto [BBB+01]

– Individuals and interactions over
processes and tools

– Working software over
comprehensive documentation

– Customer collaboration over
contract negotiation

– Responding to change
over following a plan

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 27

Testing in Software Life Cycles
Iterative-incremental Development Models

Image source:
https://en.wikipedia.org/wiki/File:Agile_Soft
ware_Development_methodology.jpg

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 28

Testing in Software Life Cycles
Iterative-incremental Development Models

● Agile Software Development => Agile testing

● Agile testing involves testing from the customer point
of view as early as possible – depending on availability
and stability of code.

● Test automation plays a central role.
Typical test execution proceeding after delivery:

1.(Automated) smoke test / sanity check

2.Execution of automated regression test suite

3.Execution of manual tests concerning new
implemented user stories / bug fixes

4.Extending automated test suite

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 29

Testing in Software Life Cycles
Iterative-incremental Development Models

● Scrum

Image source: https://en.wikipedia.org/wiki/File:Scrum_process.svg

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 30

Testing in Software Life Cycles
Testing within a Life Cycle Model

● Test levels in software life cycle models
– Development activity Testing activity
– Each test level has specific test objectives
– The analysis and design of tests for a given test

level should begin during the corresponding
development activity

– Testers should be involved in reviewing
documents as soon as drafts are available

– Test levels can be combined or reorganized
depending on the project or the system

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 31

Testing in Software Life Cycles
Testing within a Life Cycle Model

● Example: Integration of a Commercial Off-The-
Shelf (COTS) software product into a system

Purchaser may perform
– Integration testing at the system level,

e.g. integration to the infrastructure
– Acceptance testing, covering for example

● Functional testing
● Non-functional testing
● User testing
● Operational testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 32

Test Levels

Acceptance Testing

System Testing

Integration Testing

Component (Unit)
Testing

… following ISTQB

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 33

Test Levels

● For each test level could be identified:
– the generic objectives
– the work product(s) being referenced for deriving

test cases (i.e., the test basis)
– the test object (i.e., what is being tested)
– typical defects and failures to be found
– test harness requirements
– tool support
– specific approaches
– responsibilities

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 34

Test Levels
Example

● For your information: In practice other process
definitions are possible, depending … , e.g.,

03-2 –
Software

acceptance

01-1 - Unit-Test

01-2 - Integrations-Test

02-1 – Functional Test

02-2 – System Integration Test

02-3 – NFR Test

03-1 – User Acceptance Test

04-2 – Process Pilot

04-1 – Operation

Implementation

Software Design

Use Cases

Business Use Cases

NFR-Requirements

(GUI-) Requirements

Business processes in company

Companywide operation

S
o

ft
w

a
re

d
e

ve
lo

p
er

C
u

s
to

m
e

r

01-3 –
Software
delivery

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 35

Test Levels
Component Testing

Acceptance Testing

System Testing

Integration Testing

Component (Unit)
Testing

Component (Unit)
Testing

Component (Unit)
Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 36

Test Levels
Component Testing

● Also known as unit, module or program testing
● Component testing searches for defects in, and

verifies the functioning of
– software modules
– programs
– objects
– classes, etc.

that are separately testable.
● Test-driven development: Prepare and

automate test cases before coding.

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 37

Test Levels
Component Testing

● Test basis
– Component requirements
– Detailed design
– Code

● Typical test objects
– Components
– Programs
– Data conversion / migration programs
– Database modules

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 38

Test Levels
Integration Testing

Acceptance Testing

System Testing

Integration TestingIntegration Testing

Component (Unit)
Testing

Integration Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 39

Test Levels
Integration Testing

● Integration testing
tests
– interfaces between components
– interactions with different parts of a system

➢ the operating system
➢ file system
➢hardware

– interfaces between systems

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 40

Test Levels
Integration Testing

● Test basis
– Software and system design
– Architecture
– Workflows
– Use cases

● Typical test objects
– Subsystems
– Database implementation
– Infrastructure
– Interfaces
– System configuration and configuration data

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 41

Test Levels
Integration Testing

It is important to distinguish:
● Component integration testing

tests the interactions between software components
and is done after component testing

● System integration testing
tests the interactions between different systems or
between hardware and software and may be done
after system testing.
– In this case, the developing organization may control

only one side of the interface. Could be a risk.
– Business processes implemented as workflows may

involve a series of systems.
– Cross-platform issues may be significant.

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 42

Test Levels
Integration Testing

● The greater the scope of integration, the more difficult
it becomes to isolate defects to a specific component
or system. This may lead to
– increased risk
– additional time for troubleshooting

● Ideally, testers should understand the architecture and
influence integration planning

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 43

Test Levels
Integration Testing

● Top-down testing approach to integration testing
– The component at the top of the component hierarchy is

tested first, lower level components are simulated by
stubs.
➢ A stub is a skeletal or special-purpose

implementation of a software component,
used to develop or test a component that
calls or is otherwise dependent on it.
It replaces a called component (after [IEEE 610])

– Tested components are then used to test lower level
components.

– The process is repeated until the lowest level
components have been tested.

Suggestion:
Study

“Mocks Aren't
Stubs” [Fow07]

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 44

Test Levels
Integration Testing

● Top-down testing approach to integration testing

Stubs required, less drivers

Level 1

Level 2

Level 3

Comp 1

Stub
Comp2

Comp 1

Stub
Comp3

Comp 2 Comp 3

Test Cycle 1 Test Cycle 2 Test Cycle 3

Comp 1

Comp 2 Comp 3

Stub
Comp4

Comp 4

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 45

Test Levels
Integration Testing

● Bottom-up testing approach to integration testing
– The lowest level components are tested first, and then

used to facilitate the testing of higher level components.
– This process is repeated until the component at the top

of the hierarchy is tested.
– To simulate higher levels, drivers get used

● A driver is a software component or test tool that
replaces a component that takes care of the control
and/or the calling of a component or system.

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 46

Test Levels
Integration Testing

● Bottom-up testing approach to integration testing
Drivers required, less stubs

Level 1

Level 2

Level 3

Driver
Compv

Comp z Comp y

Comp v Comp u

Test Cycle 1 Test Cycle 2

Comp x

Driver
Compu

Comp z Comp y Comp x

Driver
Compt

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 47

Test Levels
Integration Testing

● Overview
Stubs and Drivers

Level 1

Level 2

Level 3 Comp z Comp y Comp x

Driver
Comptmain

Test
object

Test
object

Stub
Compz

Stub
Compy

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 48

Test Levels
System Testing

Acceptance Testing

System TestingSystem Testing

Integration Testing

Component (Unit)
Testing

System Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 49

Test Levels
System Testing

● System testing
– concerned with the behaviour of a whole

system/product
– should consider

➢ functional requirements
➢non-functional requirements
➢data quality characteristics.

● The test environment should be similar to the
final target or production environment
=> Minimize the risk of environment-specific
failures

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 50

Test Levels
System Testing

● Test basis
– System and software requirement specification
– Use cases
– Functional specification
– Risk analysis reports

● Typical test objects
– System
– User manuals
– Operation manuals
– System configuration and configuration data

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 51

Test Levels
Acceptance Testing

Acceptance TestingAcceptance Testing

System Testing

Integration Testing

Component (Unit)
Testing

Acceptance Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 52

Test Levels
Acceptance Testing

● Acceptance testing should establish confidence
in
– the system
– parts of the system
– specific non-functional characteristics of the system

● Finding defects is not the main focus

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 53

Test Levels
Acceptance Testing

Typical forms of acceptance testing (1/3):
● Operational (acceptance) testing

– System ready for deployment / operation?
– Done by system administrators
– Test scope for example:

● Testing of backup/restore
● Disaster recovery
● User management
● Data load and migration tasks
● Periodic checks of security vulnerabilities

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 54

Test Levels
Acceptance Testing

Typical forms of acceptance testing (2/3):
● User acceptance testing

– System ready for use?
– Done by business users (Customers, system users)

● Contract acceptance testing

– based on a contract’s acceptance criteria
– for custom-developed software

● Regulation acceptance testing

– based on any regulations that must be met,
such as government, legal or safety regulations

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 55

Test Levels
Acceptance Testing

Typical forms of acceptance testing (3/3):
● Alpha testing

– at the developing organization’s site
– not by the developing team.

● Beta testing, or field-testing

– by customers or potential customers at their own
locations.

… both, Alpha and Beta testing, are done to get
feedback from potential or existing customers in their
market before the software product is put up for sale
commercially

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 56

Test Levels
Acceptance Testing

● Test basis

– User requirements
– System requirements
– Use cases / User stories
– Business processes
– Risk analysis reports

● Typical test objects

– Business processes on fully integrated system
– Operational and maintenance processes
– User procedures
– Forms
– Reports
– Configuration data

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 57

Test Types

● A test type is focused on a particular test
objective, which could be:
– A function to be performed by the software
– A non-functional quality characteristic,

such as reliability or usability
– The structure or architecture of the software
– Change related, for example

➢Re-testing or confirmation testing
confirming that defects have been fixed

➢Regression testing
looking for unintended changes

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 58

Test Types
Functional testing

● Functional testing to test “what” the system does
● Functional testing considers the external behaviour of

the software (black-box testing)
● Functional tests are based on

– functions
– features
– their interoperability with specific systems

● Functional tests may be performed at all test levels
(e.g., tests for components may be based on a
component specification)

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 59

Test Types
Functional testing

Test
Conditions*

Test
Conditions*

Test CasesTest Cases

* Test condition = An item or event of a component or system that could
be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [ISTQB-GWP12].

General
testing

objectives

Specification
-

based
techniques

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 60

RisksRisks

Test Types
Functional testing

Requirement
s
specification

Requirement
s
specification

User Story
As a Scheduler I want

to update a given
appointment so that I

could add another
date.

User Story
As a Scheduler I want

to update a given
appointment so that I

could add another
date.

Functional
specification

Functional
specification Test

Conditions*

Test
Conditions*

Test CasesTest Cases

Older
version
User manual

Older
version
User manual

Older
version
Bug reports

Older
version
Bug reports

Online forums
* Test condition = An item or event of a component or system that could

be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [ISTQB-GWP12].

Specification
-

based
techniques

Use CasesUse Cases

Interviews
with end
users,
potential
customers

Interviews
with end
users,
potential
customers

undo
cume
nted

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 61

Test Types
Functional testing

● Types of functional testing
– Security testing

investigates the functions (e.g., a firewall) relating to
detection of threats, such as viruses, from malicious
outsiders

– Interoperability testing
evaluates the capability of the software product to
interact with one or more specified components or
systems

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 62

Test Types
Non-functional testing

● Non-functional testing to test “How” the system does
● Non-functional testing to measure characteristics of

systems and software that can be quantified, such as
response times for performance testing

● Typical non-functional tests:

– Performance testing

– Load testing

– Stress testing

– Usability testing

– Maintainability testing

– Reliability testing

– Portability testing

Base are quality models
(compare to ISO 9126)

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 63

Test Types
Structural Testing

● Testing of Software Structure / Architecture
● Structural tests may be performed at all test levels, for

example in

– Component testing and component integration testing

A software model could be used for structural testing,
e.g.,
● a control flow model
● a menu structure model

– System, system integration or acceptance testing

A business model could be used as well, e.g.
● business use cases

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 64

Test Types
Structural Testing

● Coverage
Extent that a structure has been exercised by a test suite,
expressed as a percentage of the items being covered

● Tools measure the code coverage of elements, such as

– Statements
– Decisions

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 65

Test Types
Re-testing and Regression Testing

● Testing related to changes
● Re-testing

– After a defect is detected and fixed
– to confirm that the original defect has been successfully

removed
– This is called confirmation

● Regression Testing

– Repeated testing of an already tested program, after
modification, to discover any defects introduced or
uncovered as a result of the change(s)

– These extent is based on the risk of not finding defects in
software that was working previously

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 66

Maintenance Testing

● Background
Once deployed, a software system is often in
service for years or decades

● Maintenance testing is done on an existing
operational system, and is triggered by
– modifications

– migration

– retirement of the software or system

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 67

Maintenance Testing

● Modifications should be planned and may
include
– enhancement changes (e.g., release-based)

– emergency changes

– changes of environment, such as operating system
or database upgrades

– upgrade of Commercial-Off-The-Shelf (COTS)
software

– patches to correct newly exposed or discovered
vulnerabilities of the operating system

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 68

Maintenance Testing

● Maintenance testing concerning
what has changed Test related changes
Examples
– Change from one platform to another

Proposal: Operational tests of the new environment
as well as of the changed software.

– Data migration from another application into the
system being maintained
Proposal: Database tests, system tests

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 69

Maintenance Testing

● Maintenance testing concerning
what has not be changed Regression
testing
– Scope of regression testing is related to

● risk of the change
● size of the existing system
● size of the change

– Impact analysis to
● determine how the existing system may be affected by

changes
● decide how much regression testing to do
● determine the regression test suite

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 70

Maintenance Testing

● Retirement of a system
Maintenance testing may include the testing of
– data migration

– archiving if long data-retention periods are required

● Challenges
– Specifications are out of date or missing

– Testers with domain knowledge are not available

Winter 2015 / 2016 Uwe Gühl - Software Testing 03 71

Sources

● [BBB+01] Beck, Beedle, van Bennekum, et al.: Manifesto for agile Software
Development, 2001, http://agilemanifesto.org/

● [IEEE 610] IEEE 610.12:1990. Standard Glossary of Software Engineering
Terminology.

● [Fow07] Martin Fowler: Mocks Aren't Stubs, 2007,
http://martinfowler.com/articles/mocksArentStubs.html

● [ISTQB-CTFLS11] International Software Testing Qualifications Board: Certified
Tester Foundation Level Syllabus, Released Version 2011,
http://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

● [ISTQB-GWP15] Glossary Working Party of International Software Testing
Qualifications Board: Standard glossary of terms used in Software Testing, Version
3.01, 2015, http://www.istqb.org/downloads/glossary.html

● [RBC82] Adrion, W. Richards, Martha A. Branstad, and John C. Cherniavsky.
"Validation, Verification, and Testing of Computer Software," Computing Surveys,
June 1982, pp. 159-192

● [Wik16] Wikipedia: ISO/IEC 9126, 2016, https://en.wikipedia.org/wiki/ISO/IEC_9126

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71

