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Test Development Process

Test Development Process covers 
● Test analysis
● Test design
● Test implementation
● Test execution
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Test Development Process
Test analysis

● Analysis of test basis documentation
 What to test? 
 What are the test conditions*?

● Requested: Bidirectional traceability between
Specifications and  Test conditions 
requirements 

– for impact analysis when requirements change 

– to determine requirements coverage for a set of 
tests

* Test condition = An item or event of a component or system that could be verified by one or more test 
cases, e. g. a function, transaction, feature, quality attribute, or structural element [ISTQB-GWP15].
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Creation / Specification of test cases and test data
● Test Case: A test case consists of a set of 

– input values
– execution preconditions 
– expected results
– execution postconditions
to cover a certain test objective(s) or test condition(s).

         Expected results should

➢ include outputs, changes to data and states, 
any other consequences of the test

➢ ideally be defined before tests get executed

Test Development Process
Test design

If expected results 
are not defined, 
then a plausible,
 but erroneous, 
result may be 
interpreted as 
the correct one
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Test Development Process
Test design

Out of ‘Standard for Software Test Documentation’ 
[IEEE STD 829-1998]

● Test design specification [ISTQB-GWP15]
“Document that specifies the test conditions 
(coverage items) for a test item, the detailed test approach 
and the associated high level test cases.”
A test plan could content several test design specifications.

● Test case specification [ISTQB-GWP15]
“Document that specifies a set of test cases 
(objective, inputs, test actions, expected results and 
execution pre conditions) for a test item.“
A test design specification could content several 
test case specifications.
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Test Development Process
Test implementation 

● During test implementation test cases are
– developed 

– implemented 

– prioritized 

– organized in the test procedure specification

● Test procedure specification [ISTQB-GWP15] 
“Document that specifies a sequence of actions 
for the execution of a test (test script or manual 
test scripts).”
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Test Development Process
Test execution

● Test execution schedule
– contents and defines the execution order of

● test procedures
… specifies the sequence of actions for a test execution

● automated test procedures (automated test scripts)
… if a test automation tool is used, contents sequence of 
actions

– takes into account factors like
● regression tests
● prioritization
● technical dependencies
● logical dependencies
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Test Design Techniques

● Purpose of a test design technique is to identify
– test conditions 

– test cases

– test data

● Combination of test design techniques to 
improve testing
– Black-box and white-box testing may also be 

combined with experience-based techniques to 
effectively use the experience of stakeholder
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Test Design Techniques

● Overview:

– White-box

– Black-box

– Grey-box

– Specification-based

– Structure-based 

– Experience-based

● Combination of test design techniques to do best 
testing, e.g. Black-box and white-box testing with 
experience-based techniques to effectively use the 
experience of stakeholder
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Test Design Techniques

● White-box test design techniques
Synonyms: Structural or structure-based 
techniques, glass box, open box
– based on an analysis of the structure of the 

component or system

– uses any information regarding the internal 
structure of the component or system to be tested
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Test Design Techniques

● Black-box test design techniques
Synonym: Specification-based techniques 
– based on an analysis of the test basis 

documentation

– include both functional and non-functional testing

– does not use any information regarding 
the internal structure of the 
component or system to be tested
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Test Design Techniques

● Gray-box test design techniques [Wik16a]
– based partly on internals of a software, involves 

knowledge of internal data structures and algorithms 

– execute defined tests at the user, or black-box level

– uses some information about the inside, 
to better test from the outside

– is important with web applications
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Test Design Techniques

Specification-based test design techniques
● Models, either formal or informal, are used for

– the specification of the problem to be solved

– the software

– the software components

● Test cases can be derived systematically from 
these models
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Test Design Techniques

Structure-based test design techniques
● Information about how the software is 

constructed is used to derive the test cases 
(e.g., code and detailed design information)

● The extent of coverage of the software can be 
measured for existing test cases, and further 
test cases can be derived systematically to 
increase coverage
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Test Design Techniques

Experience-based test design techniques
● based on the knowledge and experience about

– the software 

– its usage

– its environment

– likely defects and their distribution
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● White-box testing is based on an identified 
structure of the software or the system:
– Component level: The structure of a software component, 

as for example
● statements  branches
● decisions  distinct paths

– Integration level: The structure may be a call tree 
(a diagram in which modules call other modules)

– System level: The structure may be a 
● menu structure  web page structure
● business process

White-box Techniques
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White-box Techniques
Structural Coverages

Structural Coverage
● based on control flow analysis
● gives no advice concerning test case creation
● good starting point for thorough testing

Other criteria for designing tests could be based 
on
● data flow
● required functionality
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White-box Techniques
Structural Coverages

Structural Coverage Metrics discussed:

● Statement testing

● Decision testing*

More Structural Coverage Metrics (see e.g. [ISTQB-
CTALSTTA12] for details) are
● Condition testing

● Multiple condition testing

● Condition determination testing

● Linear Code Sequence and Jump (LCSAJ) or loop testing

● Application Programming Interface (API) testing
* Similarities to branch testing
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White-box Techniques
Statement Testing and Coverage
● Statement coverage is determined by 

– testedStatements = number of executable 
statements covered by 
(designed or executed) 
test cases

– allStatements = number of all executable 
statements in the code under test

● Statement coverage is done in component 
testing

testedStatements
allStatements
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White-box Techniques
Statement Testing and Coverage
Example 1
● Required number of 

test cases for
100 % statement 
coverage:

2
– A, B, F

– A, C, D, E, F

A

B C

E

D

F
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White-box Techniques
Statement Testing and Coverage
Example 2
● Required number of 

test cases for
100 % statement 
coverage:

1

TC1: x = 1, y = 2
Result: z = 3

/* z is greater 
value+1*/
int foo(int x, int 
y) {

int z = x;
if (y > x) {

z = y;
}

    z = z +1;
return z;

}
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White-box Techniques
Decision Testing and Coverage

● Decision coverage is determined by 

– testedDecisions = number of all decision outcomes 
covered by (designed or 
executed) test cases 

– allDecisions = number of all possible decision 
outcomes in the code under test

● Decision testing is a form of control flow testing 
as it follows a specific flow of control through 
the decision points

testedDecisions
allDecisions
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White-box Techniques
Decision Testing and Coverage

Excerpt:

● Branch coverage is determined by
testedBranches 
allBranches

– testedBranches = number of all branch outcomes
 covered by (designed or 
executed) test cases 

– AllBranches  = number of all possible branch
outcomes in the code under test

● Branch testing is a form of control flow testing as it 
follows a specific flow of control through all branches
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White-box Techniques
Decision Testing and Coverage

Example 3
● Required number of test cases for

100 % decision coverage:

2
– A, B, D, E

– A, C, D, E, F

● Hint:
100 % decision coverage implies both 
100 % branch coverage and 
100 % statement coverage [ISTQB-GWP15]

A

B

C

D

E
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White-box Techniques
Decision Testing and Coverage

Example 3
● Decision Coverage

– 1 Test case A, B, D, E
50 % Decision test coverage

– 1 Test case A, B, C, D, E
50 % Decision test coverage

● Branch Coverage
– 1 Test case A, B, D, E

60 % Branch test coverage

– 1 Test case A, B, C, D, E
80 % Branch test coverage

A

B

C

D

E
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White-box Techniques
Decision Testing and Coverage

Example 4
● Required number of 

test cases for
100 % decision 
coverage:

4
– A, B, F

– A, C, F

– A, C, D, F

– A, C, D, E, F

A

B C

E

D

F
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White-box Techniques
Decision Testing and Coverage

Example 5
● Required number of 

test cases for
100 % decision 
coverage:

2

TC1: x = 1, y =2
Result: z = 3

TC2: x = 3, y = 2
Result: z = 4

/* z is greater 
value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

    z = z +1;
return z;

}
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White-box Techniques
Statement Coverage / Decision Coverage

● Decision coverage is stronger than statement 
coverage:
– 100% decision coverage guarantees 

100% statement coverage, 

– but not vice versa.
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● Means 
50 % Decision coverage 
also 
50% Statement coverage?
==> No!

● TC1: x=3
50 % Decision coverage
75 % Statement coverage

● TC2: x=2
50 % Decision coverage
50 % Statement coverage

White-box Techniques
Statement Coverage / Decision Coverage

Code example
int foo(int x) {

int a = 0;
if (x>2) {

a = a+1;
a = a+1;

} else
    a = a+1;
}

[Büc10]
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White-box Techniques
Statement Coverage / Decision Coverage

Assessment
● Both statement and decision coverage are 

weak criteria
● “Statement-coverage criterion is so weak that it 

is generally considered useless.” [p. 44 Mye12]
● Statement coverage and decision coverage 

should be considered as a minimal requirement
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White-box Techniques
Other Structure-based Techniques

● There are stronger levels of structural coverage 
beyond decision coverage, for example,
– Condition coverage

– Multiple condition coverage

● The concept of coverage can also be applied at 
other test levels, e.g., at the integration level
– Percentage of modules exercised  Module coverage

– Percentage of components exercised
  Component coverage

– Percentage of classes exercised  Class coverage
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White-box Techniques
Structural Coverages

Challenges [Büc10]
● Different metrics definitions around
● Sometimes you can't achieve 100 % coverage
● Coverage metrics have different names 

(e.g. abbreviations have different meanings,
like C0 or C1 for statement coverage)

● Not always clear, how coverages were 
measured (important when using tools)

● Kind of coding influences results of coverage 
analysis
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White-box Techniques
Structural Coverages

Hints [Büc10]
● Clarify, that you talk about the same structural 

coverage definitions
● Clarify in using coverage measuring tools, how 

these work
● Don't be relaxed because of 100% code 

coverage
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White-box Techniques
Cyclomatic Complexity

● Complexity
The degree to which a component or system 
has a design and / or internal structure that is 
difficult to understand, maintain and verify.

● The more complex a component or a system is, 
the higher the probability that
– test coverage is not complete

– defects occur

– maintenance gets more difficult
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity metric 
– could be used to measure the complexity of a 

module's decision structure

– is the number of linearly independent paths and 
therefore, the minimum number of paths that should 
be tested
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]: 
The number of independent paths through a 
program. 
Cyclomatic complexity M is defined as: 

M = L – N + 2P, where
– L = number of edges/links in a graph

– N = number of nodes in a graph

– P = number of disconnected parts of the graph 
(e.g. a called graph or subroutine)
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White-box Techniques
Cyclomatic Complexity

Example:

M = L – N + 2P

= 8 – 7 + 2

= 3

A

B C

E

D

F

G
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White-box Techniques
Cyclomatic Complexity

Example:

M = L – N + 2P

= 8 – 7 + 2

= 3

A

B C

E

D

F

G
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]: 
Alternative calculation, if you have a program 
with binary conditions only:

M = b + 1, where 
 b = number of binary conditions
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B

C D

J

A

White-box Techniques
Cyclomatic Complexity

Example:

M = b + 1

= 5 + 1 

= 6

E F G H I

K
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White-box Techniques
Cyclomatic Complexity

Cyclomatic Complexity M 
● M is the upper bound for the 

number of test cases for decision coverage
● M > 10 should be prevented 

(following McCabe)
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White-box Techniques
Cyclomatic Complexity

● The higher M, the higher the probability of 
errors
– Studies of Sharpe [Sha08] have shown

● M = 11 had lowest probability of 28% of being fault-prone
● M = 38 had a probability of 50% of being fault-prone
● M ≥ 74 had 98 % plus probability of being fault-prone

– Walsh collected data of 276 modules [McC96, 
Wal79]:
≈ 50 % had M < 10 with 4,6/100 statements error rate

≈ 50 % had M ≥ 10 with 5,6/100 statements error rate
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White-box Techniques
Cyclomatic Complexity

● Weakness
– Assumption that faults are proportional to decision 

complexity does not consider processing complexity 
and database structure

– It does not differ between different kinds of decisions, 
which is counter intuitive
● An "IF-THEN-ELSE" statement is treated the same as a 

relatively complicated loop
● Also CASE statements are treated the same as nested IF 

statements

– It's possible that a program gets a high value for M, 
but is easy understandable (see example next page).
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White-box Techniques
Cyclomatic Complexity

Example:
const String monthsName (const int nummer) {
  switch(nummer)  {
 case 1: return "January";
 case 2: return "February";
 case 3: return "Mars";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
  }
  return "unknown month number";
}

Program has a high 
cyclomatic complexity 
M = 13.

But it is easy to  
understand.
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