
Lesson 5 – Dynamic Testing I

Uwe Gühl
Winter 2015 / 2016

Software Testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 2

Contents

● Test Design Techniques – Dynamic Testing I
– Test Development Process

– Categories of Test Design Techniques

– White-box Techniques (or Structure-based Techniques)
➢Structural Coverages
➢Statement Testing and Coverage
➢Decision Testing and Coverage
➢Statement Coverage / Decision Coverage
➢Other Structure-based Techniques
➢Structural Coverages – Challenges and Hints
➢Cyclomatic Complexity

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 3

control

Test
Planning

and

Test Development Process

Test Development Process is the core of the
Fundamental Test Process

Test
analysis

and
design

Test
implemen-

tation
and

execution

Evaluating
exit

criteria
and

reporting

Test
closure

activities

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 4

Test Development Process

Test Development Process covers
● Test analysis
● Test design
● Test implementation
● Test execution

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 5

Test specification
Test specification

Test Development Process

Informal ... to very formal

… depending on the context of the testing
– maturity of testing and development processes

– time constraints

– safety or regulatory requirements

– people involved

Little or no
documentation

Test
design
specificati
on

Test
design
specificati
on

Test case
specification

Test case
specification

Test
procedure
specification

Test
procedure
specification

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 6

Test Development Process
Test analysis

● Analysis of test basis documentation
 What to test?
 What are the test conditions*?

● Requested: Bidirectional traceability between
Specifications and Test conditions
requirements

– for impact analysis when requirements change

– to determine requirements coverage for a set of
tests

* Test condition = An item or event of a component or system that could be verified by one or more test
cases, e. g. a function, transaction, feature, quality attribute, or structural element [ISTQB-GWP15].

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 7

Creation / Specification of test cases and test data
● Test Case: A test case consists of a set of

– input values
– execution preconditions
– expected results
– execution postconditions
to cover a certain test objective(s) or test condition(s).

 Expected results should

➢ include outputs, changes to data and states,
any other consequences of the test

➢ ideally be defined before tests get executed

Test Development Process
Test design

If expected results
are not defined,
then a plausible,
 but erroneous,
result may be
interpreted as
the correct one

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 8

Test Development Process
Test design

Out of ‘Standard for Software Test Documentation’
[IEEE STD 829-1998]

● Test design specification [ISTQB-GWP15]
“Document that specifies the test conditions
(coverage items) for a test item, the detailed test approach
and the associated high level test cases.”
A test plan could content several test design specifications.

● Test case specification [ISTQB-GWP15]
“Document that specifies a set of test cases
(objective, inputs, test actions, expected results and
execution pre conditions) for a test item.“
A test design specification could content several
test case specifications.

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 9

Test Development Process
Test design

Test Design
Specification 1

Master Test Plan

Unit Test Plan
Integration
Test Plan

System
Test Plan

Acceptance
Test Plan

Test Design
Specification 2

….

Test Case
Specification 1

Test Case 1

Test Case 2

….
….

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 10

Test Development Process
Test implementation

● During test implementation test cases are
– developed

– implemented

– prioritized

– organized in the test procedure specification

● Test procedure specification [ISTQB-GWP15]
“Document that specifies a sequence of actions
for the execution of a test (test script or manual
test scripts).”

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 11

Test Development Process
Test execution

● Test execution schedule
– contents and defines the execution order of

● test procedures
… specifies the sequence of actions for a test execution

● automated test procedures (automated test scripts)
… if a test automation tool is used, contents sequence of
actions

– takes into account factors like
● regression tests
● prioritization
● technical dependencies
● logical dependencies

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 12

Test Design Techniques

● Purpose of a test design technique is to identify
– test conditions

– test cases

– test data

● Combination of test design techniques to
improve testing
– Black-box and white-box testing may also be

combined with experience-based techniques to
effectively use the experience of stakeholder

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 13

Test Design Techniques

● Overview:

– White-box

– Black-box

– Grey-box

– Specification-based

– Structure-based

– Experience-based

● Combination of test design techniques to do best
testing, e.g. Black-box and white-box testing with
experience-based techniques to effectively use the
experience of stakeholder

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 14

Test Design Techniques

● White-box test design techniques
Synonyms: Structural or structure-based
techniques, glass box, open box
– based on an analysis of the structure of the

component or system

– uses any information regarding the internal
structure of the component or system to be tested

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 15

Test Design Techniques

● Black-box test design techniques
Synonym: Specification-based techniques
– based on an analysis of the test basis

documentation

– include both functional and non-functional testing

– does not use any information regarding
the internal structure of the
component or system to be tested

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 16

Test Design Techniques

● Gray-box test design techniques [Wik16a]
– based partly on internals of a software, involves

knowledge of internal data structures and algorithms

– execute defined tests at the user, or black-box level

– uses some information about the inside,
to better test from the outside

– is important with web applications

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 17

Test Design Techniques

Specification-based test design techniques
● Models, either formal or informal, are used for

– the specification of the problem to be solved

– the software

– the software components

● Test cases can be derived systematically from
these models

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 18

Test Design Techniques

Structure-based test design techniques
● Information about how the software is

constructed is used to derive the test cases
(e.g., code and detailed design information)

● The extent of coverage of the software can be
measured for existing test cases, and further
test cases can be derived systematically to
increase coverage

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 19

Test Design Techniques

Experience-based test design techniques
● based on the knowledge and experience about

– the software

– its usage

– its environment

– likely defects and their distribution

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 20

● White-box testing is based on an identified
structure of the software or the system:
– Component level: The structure of a software component,

as for example
● statements branches
● decisions distinct paths

– Integration level: The structure may be a call tree
(a diagram in which modules call other modules)

– System level: The structure may be a
● menu structure web page structure
● business process

White-box Techniques

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 21

White-box Techniques
Structural Coverages

Structural Coverage
● based on control flow analysis
● gives no advice concerning test case creation
● good starting point for thorough testing

Other criteria for designing tests could be based
on
● data flow
● required functionality

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 22

White-box Techniques
Structural Coverages

Structural Coverage Metrics discussed:

● Statement testing

● Decision testing*

More Structural Coverage Metrics (see e.g. [ISTQB-
CTALSTTA12] for details) are
● Condition testing

● Multiple condition testing

● Condition determination testing

● Linear Code Sequence and Jump (LCSAJ) or loop testing

● Application Programming Interface (API) testing
* Similarities to branch testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 23

White-box Techniques
Statement Testing and Coverage
● Statement coverage is determined by

– testedStatements = number of executable
statements covered by
(designed or executed)
test cases

– allStatements = number of all executable
statements in the code under test

● Statement coverage is done in component
testing

testedStatements
allStatements

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 24

White-box Techniques
Statement Testing and Coverage
Example 1
● Required number of

test cases for
100 % statement
coverage:

2
– A, B, F

– A, C, D, E, F

A

B C

E

D

F

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 25

White-box Techniques
Statement Testing and Coverage
Example 2
● Required number of

test cases for
100 % statement
coverage:

1

TC1: x = 1, y = 2
Result: z = 3

/* z is greater
value+1*/
int foo(int x, int
y) {

int z = x;
if (y > x) {

z = y;
}

 z = z +1;
return z;

}

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 26

White-box Techniques
Decision Testing and Coverage

● Decision coverage is determined by

– testedDecisions = number of all decision outcomes
covered by (designed or
executed) test cases

– allDecisions = number of all possible decision
outcomes in the code under test

● Decision testing is a form of control flow testing
as it follows a specific flow of control through
the decision points

testedDecisions
allDecisions

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 27

White-box Techniques
Decision Testing and Coverage

Excerpt:

● Branch coverage is determined by
testedBranches
allBranches

– testedBranches = number of all branch outcomes
 covered by (designed or
executed) test cases

– AllBranches = number of all possible branch
outcomes in the code under test

● Branch testing is a form of control flow testing as it
follows a specific flow of control through all branches

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 28

White-box Techniques
Decision Testing and Coverage

Example 3
● Required number of test cases for

100 % decision coverage:

2
– A, B, D, E

– A, C, D, E, F

● Hint:
100 % decision coverage implies both
100 % branch coverage and
100 % statement coverage [ISTQB-GWP15]

A

B

C

D

E

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 29

White-box Techniques
Decision Testing and Coverage

Example 3
● Decision Coverage

– 1 Test case A, B, D, E
50 % Decision test coverage

– 1 Test case A, B, C, D, E
50 % Decision test coverage

● Branch Coverage
– 1 Test case A, B, D, E

60 % Branch test coverage

– 1 Test case A, B, C, D, E
80 % Branch test coverage

A

B

C

D

E

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 30

White-box Techniques
Decision Testing and Coverage

Example 4
● Required number of

test cases for
100 % decision
coverage:

4
– A, B, F

– A, C, F

– A, C, D, F

– A, C, D, E, F

A

B C

E

D

F

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 31

White-box Techniques
Decision Testing and Coverage

Example 5
● Required number of

test cases for
100 % decision
coverage:

2

TC1: x = 1, y =2
Result: z = 3

TC2: x = 3, y = 2
Result: z = 4

/* z is greater
value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

 z = z +1;
return z;

}

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 32

White-box Techniques
Statement Coverage / Decision Coverage

● Decision coverage is stronger than statement
coverage:
– 100% decision coverage guarantees

100% statement coverage,

– but not vice versa.

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 33

● Means
50 % Decision coverage
also
50% Statement coverage?
==> No!

● TC1: x=3
50 % Decision coverage
75 % Statement coverage

● TC2: x=2
50 % Decision coverage
50 % Statement coverage

White-box Techniques
Statement Coverage / Decision Coverage

Code example
int foo(int x) {

int a = 0;
if (x>2) {

a = a+1;
a = a+1;

} else
 a = a+1;
}

[Büc10]

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 34

White-box Techniques
Statement Coverage / Decision Coverage

Assessment
● Both statement and decision coverage are

weak criteria
● “Statement-coverage criterion is so weak that it

is generally considered useless.” [p. 44 Mye12]
● Statement coverage and decision coverage

should be considered as a minimal requirement

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 35

White-box Techniques
Other Structure-based Techniques

● There are stronger levels of structural coverage
beyond decision coverage, for example,
– Condition coverage

– Multiple condition coverage

● The concept of coverage can also be applied at
other test levels, e.g., at the integration level
– Percentage of modules exercised Module coverage

– Percentage of components exercised
 Component coverage

– Percentage of classes exercised Class coverage

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 36

White-box Techniques
Structural Coverages

Challenges [Büc10]
● Different metrics definitions around
● Sometimes you can't achieve 100 % coverage
● Coverage metrics have different names

(e.g. abbreviations have different meanings,
like C0 or C1 for statement coverage)

● Not always clear, how coverages were
measured (important when using tools)

● Kind of coding influences results of coverage
analysis

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 37

White-box Techniques
Structural Coverages

Hints [Büc10]
● Clarify, that you talk about the same structural

coverage definitions
● Clarify in using coverage measuring tools, how

these work
● Don't be relaxed because of 100% code

coverage

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 38

White-box Techniques
Cyclomatic Complexity

● Complexity
The degree to which a component or system
has a design and / or internal structure that is
difficult to understand, maintain and verify.

● The more complex a component or a system is,
the higher the probability that
– test coverage is not complete

– defects occur

– maintenance gets more difficult

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 39

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity metric
– could be used to measure the complexity of a

module's decision structure

– is the number of linearly independent paths and
therefore, the minimum number of paths that should
be tested

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 40

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]:
The number of independent paths through a
program.
Cyclomatic complexity M is defined as:

M = L – N + 2P, where
– L = number of edges/links in a graph

– N = number of nodes in a graph

– P = number of disconnected parts of the graph
(e.g. a called graph or subroutine)

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 41

White-box Techniques
Cyclomatic Complexity

Example:

M = L – N + 2P

= 8 – 7 + 2

= 3

A

B C

E

D

F

G

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 42

White-box Techniques
Cyclomatic Complexity

Example:

M = L – N + 2P

= 8 – 7 + 2

= 3

A

B C

E

D

F

G

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 43

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]:
Alternative calculation, if you have a program
with binary conditions only:

M = b + 1, where
 b = number of binary conditions

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 44

B

C D

J

A

White-box Techniques
Cyclomatic Complexity

Example:

M = b + 1

= 5 + 1

= 6

E F G H I

K

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 45

White-box Techniques
Cyclomatic Complexity

Cyclomatic Complexity M
● M is the upper bound for the

number of test cases for decision coverage
● M > 10 should be prevented

(following McCabe)

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 46

White-box Techniques
Cyclomatic Complexity

● The higher M, the higher the probability of
errors
– Studies of Sharpe [Sha08] have shown

● M = 11 had lowest probability of 28% of being fault-prone
● M = 38 had a probability of 50% of being fault-prone
● M ≥ 74 had 98 % plus probability of being fault-prone

– Walsh collected data of 276 modules [McC96,
Wal79]:
≈ 50 % had M < 10 with 4,6/100 statements error rate

≈ 50 % had M ≥ 10 with 5,6/100 statements error rate

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 47

White-box Techniques
Cyclomatic Complexity

● Weakness
– Assumption that faults are proportional to decision

complexity does not consider processing complexity
and database structure

– It does not differ between different kinds of decisions,
which is counter intuitive
● An "IF-THEN-ELSE" statement is treated the same as a

relatively complicated loop
● Also CASE statements are treated the same as nested IF

statements

– It's possible that a program gets a high value for M,
but is easy understandable (see example next page).

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 48

White-box Techniques
Cyclomatic Complexity

Example:
const String monthsName (const int nummer) {
 switch(nummer) {
 case 1: return "January";
 case 2: return "February";
 case 3: return "Mars";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
 }
 return "unknown month number";
}

Program has a high
cyclomatic complexity
M = 13.

But it is easy to
understand.

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 49

Sources (1/2)

● [ISTQB-CTFLS11] International Software Testing Qualifications Board:
Certified Tester Foundation Level Syllabus, Released Version 2011,
http://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

● [ISTQB-GWP15] Glossary Working Party of International Software Testing
Qualifications Board: Standard glossary of terms used in Software Testing,
Version 3.01, 2015, http://www.istqb.org/downloads/glossary.html

● [ISTQB-CTALSTTA12] International Software Testing Qualifications Board:
Certified Tester Advanced Level Syllabus, Technical Test Analyst, Version
2012, http://www.istqb.org/downloads/syllabi/advanced-level-syllabus.html

● [IEEE Sttd 829-1998] IEEE Std 8229™ (1998) IEEE Standaard for
Softwware Test Documentation ,

● [Büc10] Frank Büchner: Irrtümer über Code Coverage,
http://www.elektronikpraxis.vogel.de/index.cfm?pid=890&pk=247210&p=1;
http://www.elektronikpraxis.vogel.de/themen/embeddedsoftwareengineering/
testinstallation/articles/252993/

Winter 2015 / 2016 Uwe Gühl - Software Testing 05 50

Sources (2/2)

● [McC76] T. McCabe, A complexity measure, in: IEEE Transactions on
Software Engineering, Vol. 2, pp. 308-320, 1976.

● [McC96] NIST Special Publication 500-235, Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric, Computer Systems
Laboratory NIST Gaithersburg, MD 20899-0001, September 1996,
http://www.mccabe.com/pdf/mccabe-nist235r.pdf

● [Mye12] Glenford J. Myers: The Art of Software Testing, Third Edition, John
Wiley & Sons, Inc., 2012

● [Sha08] Rich Sharpe: McCabe Cyclomatic Complexity: the proof in the
pudding, 2008, http://www.qualitydev.net/?p=27

● [Wal79] Walsh, T., “A Software Reliability Study Using a Complexity
Measure,” AFIPS Conference Proceedings, AFIPS Press, 1979.

● [Wik16] Wikipedia, Gray box testing, 2016,
https://en.wikipedia.org/wiki/Gray_box_testing

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50

