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Unit Testing

219343: Software Testing

Some materials are from Alberto Savoia's slides on unit testing,
George Necula's software engineering course,

 and Hunt and Thomas, “Pragmatic Unit Testing,” 2003.
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Quiz
 Consider class 

SortedIntArray, where
 Member array is 

initialized to be of length 
maxsize.

 It always stores eltCount 
elements in array[0], ..., 
array[eltCount-1].

 All elements are in an 
ascending order.

 Write one test method 
for method insert, 
which inserts x into 
array (all invariants 
must hold afterwards).

public class SortedIntArray {
   protected int maxsize;
   protected int [] array;
   protected int eltCount;
   // ...
   public void insert(int x) {
      // ...
   }
}
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A classic example
 John

 John works hard.  He codes everyday.  The 
project deadline is tomorrow.  He types in about 
two hundred new lines per hour, and thinks that 
after 6 hours and roughly a thousand new lines 
added the program would work flawlessly.

 Betty
 Betty works hard. She codes everyday.  The 

project deadline is tomorrow.  She types in 
about one hundred new lines per hour, and 
keeps testing each method she adds.  She does 
not proceed to write new codes unless all 
previously written pieces work correctly.

 Guess who will go to bed earlier?
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Some rules from eXtreme 
Programming
 Coding:

 Code the unit test first
 All production code is pair programmed
 Integrate often

 Testing:
 All code must have unit test
 When a bug is found, tests are created
 Acceptance tests are run often

from: http://www.extremeprogramming.org/rules.html
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Developer Testing Revolution

 Developer testing is a key component 
in a hot paradigm: Agile/eXtreme 
Programming

 The Developer Testing Trinity
 Test
 Test early and often
 Test well
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Good reasons for developer testing

 Reduces unit-level bugs
 Forces you to slow down and think
 Improves design
 Makes development faster
 Tests are good documentation
 Tests constrain features
 Tests allows safe refactoring and reduce 

the cost of change
 Tests defend against other programmers
 Tests reduce fear
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Goals

 Does the code do what I want?
 Does the code do what I want all the 

time?
 Can I depend on it?
 Also: get a document for the code.

 Always correct documentation for your 
intention.
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Test your code

 It is your code, and your 
responsibility
 Do it for your current colleagues
 Do it for future generation of 

colleagues
 Do it for yourself
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Test early and often
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Test early and often
deadline

horrible

bad

okay

good

better!

develop & 
rework

unit test
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Heaven!

 Every class has unit tests
 The tests are executed many times 

each day
 The tests are thorough, up to date, 

and easy to maintain and analyze

 In this class, we might not aim 
for that.
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What's a unit

 What's a unit
 A single method/function/procedure
 A collection of related 

methods/functions/procedues
 Ideal world

 independent, self-sufficient, standalone
 Real world

 lots of dependence
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Basic structure

 Setup
 Create initial states
 Initialize method parameters
 Store pre-execute values

 Execute code
 Compare results
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Partial correctness assertions

 In the context of formal verification
 Notation: {P} S {Q}
 Meaning: if precondition P is met, after S 

terminates, postcondition Q holds
 Think of unit testing as a way to test 

partial correctness
 setup P
 run methods S
 check Q
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JUnit
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JUnit

 JUnit is a unit test framework for Java 
developed by Kent Beck and Erich 
Gamma

 The current version is 4.1
 Most documents on the Internet consider 

older versions (3.8.x)
 Also in some tools (e.g., Netbeans 5.5)

 http://www.junit.org/
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Class Median: a simple example

 Median.java

public class Median {
    public static int median(int a, int b, int c) {
        if(((b<a) && (a<c)) || ((c<a) && (a<b)))
            return a;
        else if(((c<b) && (b<a)) || ((a<b) && (b<c)))
            return b;
        else
            return c;
    }
}



11/24/07 219343 Software verification and validation 18

TestMedian (for JUnit 4)
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class TestMedian {

    @Test public void testMedian1() {
        assertEquals(2, Median.median(1,2,3));
        assertEquals(2, Median.median(3,1,2));
        assertEquals(2, Median.median(3,2,1));
    }

    @Test public void testMedianDup() {
        assertEquals(2, Median.median(3,2,2));
        assertEquals(1, Median.median(1,2,1));
    }

}
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Using Junit 4

 Import:
 import org.junit.Test;
 import static org.junit.Assert.*;

 Annotate test methods with @Test
 Example:

 @Test public void TestMedian1() {…}

 In test methods, verify results using 
assertXXXX
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TestMedian (for JUnit 3)
import junit.framework.TestCase;

public class MedianTest extends TestCase {

    public void testMedian1() {
        assertEquals(2, Median.median(1,2,3));
        assertEquals(2, Median.median(3,1,2));
        assertEquals(2, Median.median(3,2,1));
    }

    public void testMedianDup() {
assertEquals(2, Median.median(3,2,2));
assertEquals(1, Median.median(1,2,1));

    }
}
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Using Junit 3

 Import:
 import junit.framework.TestCase;

 Class extends TestCase

 Begin test method names with “test”
 Example:

 public void testMedian1() {…}

 In test methods, verify results using 
assertXXXX
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org.junit.Assert.assertXXXX

 Methods in class Assert
 assertEquals([message,] obj1, obj2)
 assertNull([msg,] obj)
 assertNotNull([msg,] obj)
 assertSame([msg,] obj1, obj2)
 assertNotSame([msg,] obj)
 assertTrue([msg,] cond)
 assertFalse([msg,] cond)

 fail([msg])
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Fixtures
 To avoid writings duplicate codes.

 Initialization/cleaning-up for each testcase:
 Add members holding required objects
 Annotate initialization method with @Before
 Annotate deinitialization method with @After
 For one-time set up and tear down use: 

@BeforeClass and @AfterClass
 Don’t forget to import org.junit.Before, 

org.junit.After, org.junit.BeforeClass, 
org.junit.AfterClass

 For Junit 3, use: setUp() and tearDown()
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Practice

 SortedIntArray.insert
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Expected Exceptions

 With try and catch
@Test

public void testOverInsert2() {

   SortedIntArray s = new SortedIntArray(1);

   try {

      s.insert(10);

      s.insert(100);

      fail("Expected exception here");

   }catch(SortedIntArray.TooManyEltsException tml){

   }

}
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Expected Exceptions with Junit 4

 With try and catch

@Test(expected = 
SortedIntArray.TooManyEltsException.class)

public void testOverInsert() {

   SortedIntArray s = new SortedIntArray(1);

   s.insert(10);

   s.insert(100);

}
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JUnit

 Don't forget that you can look at what 
lies inside the classes.  It is not just a 
blind test!!
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Example for Stack class

    @Test public void testStress() {
        for(int i=0; i<100; i++)
            stack.push(""+i);
        Stack.StackNode node = stack.stackTop;
        for(int i=0; i<100; i++) {
            assertTrue(node != null);
            assertEquals(node.item,""+(99-i));
            node = node.next;
        }
        assertTrue(node == null);
    }
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Map Application: Locating box

 Want to find the location to display 
text.

Text 1
Text two

TT
Text 4

New Text

New TextNew Text

x

y
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Method isFree
class TextLocator {

   public void add(int x, int y,

                   int tw, int th) {...}

   // method under test

   public boolean isFreeFor(int x, int y,
                         int tw, int th) {

   ...
}

}
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Practice
 We have class TopK which is a container 

class that allows you to add new integers 
and keeps K highest integers.

 Its interface is:
public class TopK {
    public TopK(int k) {...} // constructor: 
                             // k = # of items it keeps
    public void add(int c) {...}   // add new integer.
    public int getNumKept() {...} // get # of integer it keeps
    // get the i-th highest integer in the list.
    public int get(int i) {...}
}
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Another testing framework

 TestNG
 More flexible, e.g., test cases 

can have parameters
 Covers more area of testint, 

e.g., functional, integration
 http://testng.org/doc/index.html 
 Read about the difference from 

JUnit 4 at http://www.ibm.com/ 
developerworks/java/library/j-
cq08296/
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What to test
 Right – are the result right?
 B – are all the boundary conditions CORRECT?
 I – can you check inverse relationship?
 C – can you cross-check results using other means?
 E – can you force error condition to happen?
 P – are performance characteristics within bounds?

From Hunt and Thomas, “Pragmatic Unit Testing,” 2003
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Are the results RIGHT?

 If the code runs correctly, how would 
I know?
 Can be done even when the requirement 

is not completely known.  ---  Testing 
also helps clarify the requirement.
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Boundary conditions

 Most bugs live at the edge.
 Cases to consider:

 Random input
 Badly formatted data
 Empty data
 Values out of normal ranges
 Duplications
 Ordered lists that aren't, and vise-versa
 Things our of order
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Boundary conditions: practice

 Practice with TopK
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Inverse relationship (1)

 Use inverse operation to check

public void testSquareRoot() {

   double x = mySquareRoot(4.0)
   assertEquals(4.0, x * x, 0.00001);
}
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Inverse relationship (2)

 Use inverse operation to check
public void testInsert() {
   list.insert(100); // we insert item

   List.ListNode node = list.head;   // to check, we look for it
   int i;

   for(i=0; i<list.length; i++)
      if(node.item == 100)
         break;
   assertTrue(i!=list.length);
}
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Cross-check

 Check you method with other means
 Use another (slower) method to check 

result, e.g., for sorting algorithms.
 Check that the aggregate characteristic 

is correct.
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Forcing error conditions

 From other parts of program
 Practice: TopK

 From environment
 Out of memory
 Out of disks
 Clock?
 Network errors
 System load
 Limited color palette
 Video resolutions
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Performance characteristics

 Fast enough?
 Use Timer.

 In JUnit, can add
 @Test (timeout=10) public void xxxx
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Test cases

 Specific / general ?
 specific: acctNum = 1234
 general: acctNum >= 0

 Weak assertion / strong assertion ?
 Weak: getBalance(acctNum) >= 

MIN_BALANCE
 Strong: getBalance(acctNum) = 12.50
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Weak assertion

 An assertion is weak if it can evaluate 
to true even if the aspect of the 
implementation that it's testing is 
incorrect

 WA == false  -> bug
 bug !-> WA == false
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Strong assertion

 An assertion is strong if it will 
evaluate to true if and only if the 
aspect of the implementation that it's 
testing is correct

 SA == false  -> bug
 bug  -> SA == false
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Strong!=correct

 Since each strong assertion checks 
only one aspect of the 
implementation.

 There is no guarantee that there will be 
no side effects

{    Bank b    bank.totalDeposits() == 10000000
    bank.getBalance(1234) == 500}
    bank.deposit(1234,500){
    bank.totalDeposite() == 10000500    bank.getBalance(1234) == 1000}
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Class invariants
 A class invariant is a property that is true of 

all objects of a given class before and after 
each public method calls
 SortedIntList

 array is sorted
 eltCount <= maxsize

 Employee class
 hourlySalary >= MIN_WAGE
 getManager() != null

 Class invariants are a cheap and powerful 
testing tools, but rarely used in manual unit 
testing.
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Bottom lines

 Unit testing is not easy
 Testing effort

 3-4 lines of test code for every one line 
of code to get 90-100% coverage

 Usually, consider only normal 
execution path.  

 Automation?
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Testing dependent classes

 Each unit usually interacts with other 
units

 Techniques
 using stub
 using mock objects
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Using stub
 If your code calls System.currentTimeMillis(), 

and this return value is crucial to your testing:
 Encapsulate this call.

 Add stub

 Quite messy!

public long getTime() {
    return System.currentTimeMillis();
}

public long getTime() {
   if(debug)
      retirm debug_cur_time;
   else
      return System.currentTimeMillis();
}
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Using mock objects

 Use an interface to describe the 
object

 Implement the interface for 
production code

 Implement the interface in a mock 
object for testing

 With mock objects, you can do 
interaction-based testing
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Mock objects: example
 Interface

 Real implementation

 Mock implementation

public interface Environmental {
    public long getTime();
}

public class SystemEnv implements Environmental {    public long getTime() {        return System.getTimeMillis();    }}

public class MockSystemEnv implements Environmental {    public long getTime() {        return current_time;    }    public void setTime(long t) {        current_time = t;    }    private long current_time;}
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State-Based Testing & Interaction-
Based Testing

 What we have done so far could be 
called “state-based testing.”
 We inject inputs into the objects, and 

see if their states change accordingly.
 If there is no state change in the objects, 

it is difficult to use state-based testing.

 Interaction-based testing looks at 
how the objects interact.

Further reading: Martin Fowler’s article “Mocks Aren’t Stubs,” and Nat Pryce’s 
article “State vs. Interaction Based Testing”.  Google it.
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Mock Libraries

 EasyMock
 Create mock objects by “record-and-

playback”
 Easy to use

 jMock
 Create mock by specifying how it interacts
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Easy Mock

 Easy Mock is a tool that let you 
create a mock object and specify how 
it interacts using a record-and-replay 
approach.

 Eliminate the need to write a concrete 
class.
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Easy Mock: Steps

 Record:
 Create a mock object
 Record the interaction, specify the return 

values
 Press “replay”.

 Replay:
 Run the test
 The mock object would act as recorded.
 In every step, it would verify all the 

interactions, i.e., all the calls.
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More on Easy Mock
 See the demo.

 http://www.easymock.org/
 Document: 

http://www.easymock.org/ 
EasyMock2_2_Documentation.html
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Note for JUnit

 Testing in a project
 Declare members as protected so that 

testcases in the same package can see 
it.

 If we want to place the testcases in 
another directory, we can duplicates the 
program package directory structure so 
that the testcases are still in the same 
package.
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Design for test

 Testing force you to reorganize your 
design

 (More on this later)
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Conclusion

 Unit testing is important
 Mainly a partial correctness assertion

 Weak assertion / strong assertion

 Good test:
 RIGHT-BICEP

 Unit testing dependent systems
 Use stub and mock object


