
11/24/07 219343 Software verification and validation 1

Unit Testing

219343: Software Testing

Some materials are from Alberto Savoia's slides on unit testing,
George Necula's software engineering course,

 and Hunt and Thomas, “Pragmatic Unit Testing,” 2003.

11/24/07 219343 Software verification and validation 2

Quiz
 Consider class

SortedIntArray, where
 Member array is

initialized to be of length
maxsize.

 It always stores eltCount
elements in array[0], ...,
array[eltCount-1].

 All elements are in an
ascending order.

 Write one test method
for method insert,
which inserts x into
array (all invariants
must hold afterwards).

public class SortedIntArray {
 protected int maxsize;
 protected int [] array;
 protected int eltCount;
 // ...
 public void insert(int x) {
 // ...
 }
}

11/24/07 219343 Software verification and validation 3

A classic example
 John

 John works hard. He codes everyday. The
project deadline is tomorrow. He types in about
two hundred new lines per hour, and thinks that
after 6 hours and roughly a thousand new lines
added the program would work flawlessly.

 Betty
 Betty works hard. She codes everyday. The

project deadline is tomorrow. She types in
about one hundred new lines per hour, and
keeps testing each method she adds. She does
not proceed to write new codes unless all
previously written pieces work correctly.

 Guess who will go to bed earlier?

11/24/07 219343 Software verification and validation 4

Some rules from eXtreme
Programming
 Coding:

 Code the unit test first
 All production code is pair programmed
 Integrate often

 Testing:
 All code must have unit test
 When a bug is found, tests are created
 Acceptance tests are run often

from: http://www.extremeprogramming.org/rules.html

11/24/07 219343 Software verification and validation 5

Developer Testing Revolution

 Developer testing is a key component
in a hot paradigm: Agile/eXtreme
Programming

 The Developer Testing Trinity
 Test
 Test early and often
 Test well

11/24/07 219343 Software verification and validation 6

Good reasons for developer testing

 Reduces unit-level bugs
 Forces you to slow down and think
 Improves design
 Makes development faster
 Tests are good documentation
 Tests constrain features
 Tests allows safe refactoring and reduce

the cost of change
 Tests defend against other programmers
 Tests reduce fear

11/24/07 219343 Software verification and validation 7

Goals

 Does the code do what I want?
 Does the code do what I want all the

time?
 Can I depend on it?
 Also: get a document for the code.

 Always correct documentation for your
intention.

11/24/07 219343 Software verification and validation 8

Test your code

 It is your code, and your
responsibility
 Do it for your current colleagues
 Do it for future generation of

colleagues
 Do it for yourself

11/24/07 219343 Software verification and validation 9

Test early and often

time

co
st

 t
o
 c

o
rr

ec
t

a
d
ef

ec
t

Better find it here!!

11/24/07 219343 Software verification and validation 10

Test early and often
deadline

horrible

bad

okay

good

better!

develop &
rework

unit test

11/24/07 219343 Software verification and validation 11

Heaven!

 Every class has unit tests
 The tests are executed many times

each day
 The tests are thorough, up to date,

and easy to maintain and analyze

 In this class, we might not aim
for that.

11/24/07 219343 Software verification and validation 12

What's a unit

 What's a unit
 A single method/function/procedure
 A collection of related

methods/functions/procedues
 Ideal world

 independent, self-sufficient, standalone
 Real world

 lots of dependence

11/24/07 219343 Software verification and validation 13

Basic structure

 Setup
 Create initial states
 Initialize method parameters
 Store pre-execute values

 Execute code
 Compare results

11/24/07 219343 Software verification and validation 14

Partial correctness assertions

 In the context of formal verification
 Notation: {P} S {Q}
 Meaning: if precondition P is met, after S

terminates, postcondition Q holds
 Think of unit testing as a way to test

partial correctness
 setup P
 run methods S
 check Q

11/24/07 219343 Software verification and validation 15

JUnit

11/24/07 219343 Software verification and validation 16

JUnit

 JUnit is a unit test framework for Java
developed by Kent Beck and Erich
Gamma

 The current version is 4.1
 Most documents on the Internet consider

older versions (3.8.x)
 Also in some tools (e.g., Netbeans 5.5)

 http://www.junit.org/

11/24/07 219343 Software verification and validation 17

Class Median: a simple example

 Median.java

public class Median {
 public static int median(int a, int b, int c) {
 if(((b<a) && (a<c)) || ((c<a) && (a<b)))
 return a;
 else if(((c<b) && (b<a)) || ((a<b) && (b<c)))
 return b;
 else
 return c;
 }
}

11/24/07 219343 Software verification and validation 18

TestMedian (for JUnit 4)
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class TestMedian {

 @Test public void testMedian1() {
 assertEquals(2, Median.median(1,2,3));
 assertEquals(2, Median.median(3,1,2));
 assertEquals(2, Median.median(3,2,1));
 }

 @Test public void testMedianDup() {
 assertEquals(2, Median.median(3,2,2));
 assertEquals(1, Median.median(1,2,1));
 }

}

11/24/07 219343 Software verification and validation 19

Using Junit 4

 Import:
 import org.junit.Test;
 import static org.junit.Assert.*;

 Annotate test methods with @Test
 Example:

 @Test public void TestMedian1() {…}

 In test methods, verify results using
assertXXXX

11/24/07 219343 Software verification and validation 20

TestMedian (for JUnit 3)
import junit.framework.TestCase;

public class MedianTest extends TestCase {

 public void testMedian1() {
 assertEquals(2, Median.median(1,2,3));
 assertEquals(2, Median.median(3,1,2));
 assertEquals(2, Median.median(3,2,1));
 }

 public void testMedianDup() {
assertEquals(2, Median.median(3,2,2));
assertEquals(1, Median.median(1,2,1));

 }
}

11/24/07 219343 Software verification and validation 21

Using Junit 3

 Import:
 import junit.framework.TestCase;

 Class extends TestCase

 Begin test method names with “test”
 Example:

 public void testMedian1() {…}

 In test methods, verify results using
assertXXXX

11/24/07 219343 Software verification and validation 22

org.junit.Assert.assertXXXX

 Methods in class Assert
 assertEquals([message,] obj1, obj2)
 assertNull([msg,] obj)
 assertNotNull([msg,] obj)
 assertSame([msg,] obj1, obj2)
 assertNotSame([msg,] obj)
 assertTrue([msg,] cond)
 assertFalse([msg,] cond)

 fail([msg])

11/24/07 219343 Software verification and validation 23

Fixtures
 To avoid writings duplicate codes.

 Initialization/cleaning-up for each testcase:
 Add members holding required objects
 Annotate initialization method with @Before
 Annotate deinitialization method with @After
 For one-time set up and tear down use:

@BeforeClass and @AfterClass
 Don’t forget to import org.junit.Before,

org.junit.After, org.junit.BeforeClass,
org.junit.AfterClass

 For Junit 3, use: setUp() and tearDown()

11/24/07 219343 Software verification and validation 24

Practice

 SortedIntArray.insert

11/24/07 219343 Software verification and validation 25

Expected Exceptions

 With try and catch
@Test

public void testOverInsert2() {

 SortedIntArray s = new SortedIntArray(1);

 try {

 s.insert(10);

 s.insert(100);

 fail("Expected exception here");

 }catch(SortedIntArray.TooManyEltsException tml){

 }

}

11/24/07 219343 Software verification and validation 26

Expected Exceptions with Junit 4

 With try and catch

@Test(expected =
SortedIntArray.TooManyEltsException.class)

public void testOverInsert() {

 SortedIntArray s = new SortedIntArray(1);

 s.insert(10);

 s.insert(100);

}

11/24/07 219343 Software verification and validation 27

JUnit

 Don't forget that you can look at what
lies inside the classes. It is not just a
blind test!!

11/24/07 219343 Software verification and validation 28

Example for Stack class

 @Test public void testStress() {
 for(int i=0; i<100; i++)
 stack.push(""+i);
 Stack.StackNode node = stack.stackTop;
 for(int i=0; i<100; i++) {
 assertTrue(node != null);
 assertEquals(node.item,""+(99-i));
 node = node.next;
 }
 assertTrue(node == null);
 }

11/24/07 219343 Software verification and validation 29

Map Application: Locating box

 Want to find the location to display
text.

Text 1
Text two

TT
Text 4

New Text

New TextNew Text

x

y

11/24/07 219343 Software verification and validation 30

Method isFree
class TextLocator {

 public void add(int x, int y,

 int tw, int th) {...}

 // method under test

 public boolean isFreeFor(int x, int y,
 int tw, int th) {

 ...
}

}

11/24/07 219343 Software verification and validation 31

Practice
 We have class TopK which is a container

class that allows you to add new integers
and keeps K highest integers.

 Its interface is:
public class TopK {
 public TopK(int k) {...} // constructor:
 // k = # of items it keeps
 public void add(int c) {...} // add new integer.
 public int getNumKept() {...} // get # of integer it keeps
 // get the i-th highest integer in the list.
 public int get(int i) {...}
}

11/24/07 219343 Software verification and validation 32

Another testing framework

 TestNG
 More flexible, e.g., test cases

can have parameters
 Covers more area of testint,

e.g., functional, integration
 http://testng.org/doc/index.html
 Read about the difference from

JUnit 4 at http://www.ibm.com/
developerworks/java/library/j-
cq08296/

11/24/07 219343 Software verification and validation 33

What to test
 Right – are the result right?
 B – are all the boundary conditions CORRECT?
 I – can you check inverse relationship?
 C – can you cross-check results using other means?
 E – can you force error condition to happen?
 P – are performance characteristics within bounds?

From Hunt and Thomas, “Pragmatic Unit Testing,” 2003

11/24/07 219343 Software verification and validation 34

Are the results RIGHT?

 If the code runs correctly, how would
I know?
 Can be done even when the requirement

is not completely known. --- Testing
also helps clarify the requirement.

11/24/07 219343 Software verification and validation 35

Boundary conditions

 Most bugs live at the edge.
 Cases to consider:

 Random input
 Badly formatted data
 Empty data
 Values out of normal ranges
 Duplications
 Ordered lists that aren't, and vise-versa
 Things our of order

11/24/07 219343 Software verification and validation 36

Boundary conditions: practice

 Practice with TopK

11/24/07 219343 Software verification and validation 37

Inverse relationship (1)

 Use inverse operation to check

public void testSquareRoot() {

 double x = mySquareRoot(4.0)
 assertEquals(4.0, x * x, 0.00001);
}

11/24/07 219343 Software verification and validation 38

Inverse relationship (2)

 Use inverse operation to check
public void testInsert() {
 list.insert(100); // we insert item

 List.ListNode node = list.head; // to check, we look for it
 int i;

 for(i=0; i<list.length; i++)
 if(node.item == 100)
 break;
 assertTrue(i!=list.length);
}

11/24/07 219343 Software verification and validation 39

Cross-check

 Check you method with other means
 Use another (slower) method to check

result, e.g., for sorting algorithms.
 Check that the aggregate characteristic

is correct.

11/24/07 219343 Software verification and validation 40

Forcing error conditions

 From other parts of program
 Practice: TopK

 From environment
 Out of memory
 Out of disks
 Clock?
 Network errors
 System load
 Limited color palette
 Video resolutions

11/24/07 219343 Software verification and validation 41

Performance characteristics

 Fast enough?
 Use Timer.

 In JUnit, can add
 @Test (timeout=10) public void xxxx

11/24/07 219343 Software verification and validation 42

Test cases

 Specific / general ?
 specific: acctNum = 1234
 general: acctNum >= 0

 Weak assertion / strong assertion ?
 Weak: getBalance(acctNum) >=

MIN_BALANCE
 Strong: getBalance(acctNum) = 12.50

11/24/07 219343 Software verification and validation 43

Weak assertion

 An assertion is weak if it can evaluate
to true even if the aspect of the
implementation that it's testing is
incorrect

 WA == false -> bug
 bug !-> WA == false

11/24/07 219343 Software verification and validation 44

Strong assertion

 An assertion is strong if it will
evaluate to true if and only if the
aspect of the implementation that it's
testing is correct

 SA == false -> bug
 bug -> SA == false

11/24/07 219343 Software verification and validation 45

Strong!=correct

 Since each strong assertion checks
only one aspect of the
implementation.

 There is no guarantee that there will be
no side effects

{ Bank b bank.totalDeposits() == 10000000
 bank.getBalance(1234) == 500}
 bank.deposit(1234,500){
 bank.totalDeposite() == 10000500 bank.getBalance(1234) == 1000}

11/24/07 219343 Software verification and validation 46

Class invariants
 A class invariant is a property that is true of

all objects of a given class before and after
each public method calls
 SortedIntList

 array is sorted
 eltCount <= maxsize

 Employee class
 hourlySalary >= MIN_WAGE
 getManager() != null

 Class invariants are a cheap and powerful
testing tools, but rarely used in manual unit
testing.

11/24/07 219343 Software verification and validation 47

Bottom lines

 Unit testing is not easy
 Testing effort

 3-4 lines of test code for every one line
of code to get 90-100% coverage

 Usually, consider only normal
execution path.

 Automation?

11/24/07 219343 Software verification and validation 48

11/24/07 219343 Software verification and validation 49

Testing dependent classes

 Each unit usually interacts with other
units

 Techniques
 using stub
 using mock objects

11/24/07 219343 Software verification and validation 50

Using stub
 If your code calls System.currentTimeMillis(),

and this return value is crucial to your testing:
 Encapsulate this call.

 Add stub

 Quite messy!

public long getTime() {
 return System.currentTimeMillis();
}

public long getTime() {
 if(debug)
 retirm debug_cur_time;
 else
 return System.currentTimeMillis();
}

11/24/07 219343 Software verification and validation 51

Using mock objects

 Use an interface to describe the
object

 Implement the interface for
production code

 Implement the interface in a mock
object for testing

 With mock objects, you can do
interaction-based testing

11/24/07 219343 Software verification and validation 52

Mock objects: example
 Interface

 Real implementation

 Mock implementation

public interface Environmental {
 public long getTime();
}

public class SystemEnv implements Environmental { public long getTime() { return System.getTimeMillis(); }}

public class MockSystemEnv implements Environmental { public long getTime() { return current_time; } public void setTime(long t) { current_time = t; } private long current_time;}

11/24/07 219343 Software verification and validation 53

State-Based Testing & Interaction-
Based Testing

 What we have done so far could be
called “state-based testing.”
 We inject inputs into the objects, and

see if their states change accordingly.
 If there is no state change in the objects,

it is difficult to use state-based testing.

 Interaction-based testing looks at
how the objects interact.

Further reading: Martin Fowler’s article “Mocks Aren’t Stubs,” and Nat Pryce’s
article “State vs. Interaction Based Testing”. Google it.

11/24/07 219343 Software verification and validation 54

Mock Libraries

 EasyMock
 Create mock objects by “record-and-

playback”
 Easy to use

 jMock
 Create mock by specifying how it interacts

11/24/07 219343 Software verification and validation 55

Easy Mock

 Easy Mock is a tool that let you
create a mock object and specify how
it interacts using a record-and-replay
approach.

 Eliminate the need to write a concrete
class.

11/24/07 219343 Software verification and validation 56

Easy Mock: Steps

 Record:
 Create a mock object
 Record the interaction, specify the return

values
 Press “replay”.

 Replay:
 Run the test
 The mock object would act as recorded.
 In every step, it would verify all the

interactions, i.e., all the calls.

11/24/07 219343 Software verification and validation 57

More on Easy Mock
 See the demo.

 http://www.easymock.org/
 Document:

http://www.easymock.org/
EasyMock2_2_Documentation.html

11/24/07 219343 Software verification and validation 58

Note for JUnit

 Testing in a project
 Declare members as protected so that

testcases in the same package can see
it.

 If we want to place the testcases in
another directory, we can duplicates the
program package directory structure so
that the testcases are still in the same
package.

11/24/07 219343 Software verification and validation 59

Design for test

 Testing force you to reorganize your
design

 (More on this later)

11/24/07 219343 Software verification and validation 60

Conclusion

 Unit testing is important
 Mainly a partial correctness assertion

 Weak assertion / strong assertion

 Good test:
 RIGHT-BICEP

 Unit testing dependent systems
 Use stub and mock object

