
12/10/07 219343 Software verification and validation 1

Unit Testing: Mock Objects

219343: Software Testing

Some materials are from Alberto Savoia's slides on unit testing,
George Necula's software engineering course,

 and Hunt and Thomas, “Pragmatic Unit Testing,” 2003.



12/10/07 219343 Software verification and validation 2

Testing dependent classes

 Each unit usually interacts with other 
units

 Techniques
 using stub
 using mock objects



12/10/07 219343 Software verification and validation 3

Using stub
 If your code calls System.currentTimeMillis(), 

and this return value is crucial to your testing:
 Encapsulate this call.

 Add stub

 Quite messy!

public long getTime() {
    return System.currentTimeMillis();
}

public long getTime() {
   if(debug)
      return debug_cur_time;
   else
      return System.currentTimeMillis();
}



12/10/07 219343 Software verification and validation 4

Using mock objects

 Use an interface to describe the 
object

 Implement the interface for 
production code

 Implement the interface in a mock 
object for testing

 With mock objects, you can do 
interaction-based testing



12/10/07 219343 Software verification and validation 5

Mock objects: example
 Interface

 Real implementation

 Mock implementation

public interface Environmental {
    public long getTime();
}

public class SystemEnv implements Environmental {    public long getTime() {        return System.getTimeMillis();    }}

public class MockSystemEnv implements Environmental {    public long getTime() {        return current_time;    }    public void setTime(long t) {        current_time = t;    }    private long current_time;}



12/10/07 219343 Software verification and validation 6

State-Based Testing & Interaction-
Based Testing

 What we have done so far could be 
called “state-based testing.”
 We inject inputs into the objects, and 

see if their states change accordingly.
 If there is no state change in the objects, 

it is difficult to use state-based testing.

 Interaction-based testing looks at 
how the objects interact.

Further reading: Martin Fowler’s article “Mocks Aren’t Stubs,” and Nat Pryce’s 
article “State vs. Interaction Based Testing”.  Google it.



12/10/07 219343 Software verification and validation 7

Mock Libraries

 EasyMock
 Create mock objects by “record-and-

playback”
 Easy to use

 jMock
 Create mock by specifying how it interacts



12/10/07 219343 Software verification and validation 8

Easy Mock

 Easy Mock is a tool that let you 
create a mock object and specify how 
it interacts using a record-and-replay 
approach.

 Eliminate the need to write a concrete 
class.



12/10/07 219343 Software verification and validation 9

Easy Mock: Steps

 Record:
 Create a mock object
 Record the interaction, specify the return 

values
 Press “replay”.

 Replay:
 Run the test
 The mock object would act as recorded.
 In every step, it would verify all the 

interactions, i.e., all the calls.



12/10/07 219343 Software verification and validation 10

Example: Reminder
public class Reminder { ...

  class Item { public int time; public String msg; }

  protected Vector<Item> items;

  public void refresh() {

    int currTime = getTime();

    for(Enumeration<Item> e=items.elements(); 

        e.hasMoreElements();) {

      Item i = e.nextElement();

      if((i.time> prevTime)&&(i.time <= currTime))

        System.out.println(i.msg);

    }

    prevTime = currTime;

}}



12/10/07 219343 Software verification and validation 11

Refactor

Reminder

Clock
MsgBox

getTime

print



12/10/07 219343 Software verification and validation 12

Interface Clock

public interface Clock {
public int getTime();

}



12/10/07 219343 Software verification and validation 13

Constructor of Reminder

public Reminder(Clock clk) { 
    clock = clk;
    prevTime = -1;
    items = new Vector<Item>();
}



12/10/07 219343 Software verification and validation 14

Method Refresh
  public void refresh() {

    int currTime = clock.getTime();

    for(Enumeration<Item> e=items.elements(); 

        e.hasMoreElements();) {...}

    prevTime = currTime;

  }



12/10/07 219343 Software verification and validation 15

Mocks: creating

@Before public void setUp() {

  cMock = createMock(Clock.class);

  rem = new Reminder(cMock);

}



12/10/07 219343 Software verification and validation 16

Mocks: setting up

@Test public void testReminder() {

  expect(cMock.getTime()).andReturn(1);

  expect(cMock.getTime()).andReturn(2);

  expect(cMock.getTime()).andReturn(3);

  replay(cMock);

  ..

}



12/10/07 219343 Software verification and validation 17

Mocks: using & verifying

@Test public void testReminder() {
  expect(cMock.getTime()).andReturn(1);   ...

  replay(cMock);

  rem.add(1,”hello1”);

  rem.add(2,”hello2”);

  rem.refresh(); 

  rem.refresh();

  rem.refresh();

  verify(cMock);

}



12/10/07 219343 Software verification and validation 18

What does EasyMock do?

 Checks the interaction.

 At the end, a call to verify makes 
sure that every specified interaction is 
called.



12/10/07 219343 Software verification and validation 19

Interactions

YourObject MockObject

First, you program 
the interaction.

Then, check the 
interactions.

Verify makes sure
that you every
interaction is made.



12/10/07 219343 Software verification and validation 20

More on Easy Mock
 See the demo.

 http://www.easymock.org/
 Document: 

http://www.easymock.org/ 
EasyMock2_3_Documentation.html



12/10/07 219343 Software verification and validation 21

Note for JUnit

 Testing in a project
 Declare members as protected so that 

testcases in the same package can see 
it.

 If we want to place the testcases in 
another directory, we can duplicates the 
program package directory structure so 
that the testcases are still in the same 
package.



12/10/07 219343 Software verification and validation 22

Design for test

 Testing force you to reorganize your 
design

 (More on this later)



12/10/07 219343 Software verification and validation 23

Conclusion

 Unit testing is important
 Mainly a partial correctness assertion

 Weak assertion / strong assertion

 Good test:
 RIGHT-BICEP

 Unit testing dependent systems
 Use stub and mock object


