
12/10/07 219343 Software verification and validation 1

Unit Testing: Mock Objects

219343: Software Testing

Some materials are from Alberto Savoia's slides on unit testing,
George Necula's software engineering course,

 and Hunt and Thomas, “Pragmatic Unit Testing,” 2003.

12/10/07 219343 Software verification and validation 2

Testing dependent classes

 Each unit usually interacts with other
units

 Techniques
 using stub
 using mock objects

12/10/07 219343 Software verification and validation 3

Using stub
 If your code calls System.currentTimeMillis(),

and this return value is crucial to your testing:
 Encapsulate this call.

 Add stub

 Quite messy!

public long getTime() {
 return System.currentTimeMillis();
}

public long getTime() {
 if(debug)
 return debug_cur_time;
 else
 return System.currentTimeMillis();
}

12/10/07 219343 Software verification and validation 4

Using mock objects

 Use an interface to describe the
object

 Implement the interface for
production code

 Implement the interface in a mock
object for testing

 With mock objects, you can do
interaction-based testing

12/10/07 219343 Software verification and validation 5

Mock objects: example
 Interface

 Real implementation

 Mock implementation

public interface Environmental {
 public long getTime();
}

public class SystemEnv implements Environmental { public long getTime() { return System.getTimeMillis(); }}

public class MockSystemEnv implements Environmental { public long getTime() { return current_time; } public void setTime(long t) { current_time = t; } private long current_time;}

12/10/07 219343 Software verification and validation 6

State-Based Testing & Interaction-
Based Testing

 What we have done so far could be
called “state-based testing.”
 We inject inputs into the objects, and

see if their states change accordingly.
 If there is no state change in the objects,

it is difficult to use state-based testing.

 Interaction-based testing looks at
how the objects interact.

Further reading: Martin Fowler’s article “Mocks Aren’t Stubs,” and Nat Pryce’s
article “State vs. Interaction Based Testing”. Google it.

12/10/07 219343 Software verification and validation 7

Mock Libraries

 EasyMock
 Create mock objects by “record-and-

playback”
 Easy to use

 jMock
 Create mock by specifying how it interacts

12/10/07 219343 Software verification and validation 8

Easy Mock

 Easy Mock is a tool that let you
create a mock object and specify how
it interacts using a record-and-replay
approach.

 Eliminate the need to write a concrete
class.

12/10/07 219343 Software verification and validation 9

Easy Mock: Steps

 Record:
 Create a mock object
 Record the interaction, specify the return

values
 Press “replay”.

 Replay:
 Run the test
 The mock object would act as recorded.
 In every step, it would verify all the

interactions, i.e., all the calls.

12/10/07 219343 Software verification and validation 10

Example: Reminder
public class Reminder { ...

 class Item { public int time; public String msg; }

 protected Vector<Item> items;

 public void refresh() {

 int currTime = getTime();

 for(Enumeration<Item> e=items.elements();

 e.hasMoreElements();) {

 Item i = e.nextElement();

 if((i.time> prevTime)&&(i.time <= currTime))

 System.out.println(i.msg);

 }

 prevTime = currTime;

}}

12/10/07 219343 Software verification and validation 11

Refactor

Reminder

Clock
MsgBox

getTime

print

12/10/07 219343 Software verification and validation 12

Interface Clock

public interface Clock {
public int getTime();

}

12/10/07 219343 Software verification and validation 13

Constructor of Reminder

public Reminder(Clock clk) {
 clock = clk;
 prevTime = -1;
 items = new Vector<Item>();
}

12/10/07 219343 Software verification and validation 14

Method Refresh
 public void refresh() {

 int currTime = clock.getTime();

 for(Enumeration<Item> e=items.elements();

 e.hasMoreElements();) {...}

 prevTime = currTime;

 }

12/10/07 219343 Software verification and validation 15

Mocks: creating

@Before public void setUp() {

 cMock = createMock(Clock.class);

 rem = new Reminder(cMock);

}

12/10/07 219343 Software verification and validation 16

Mocks: setting up

@Test public void testReminder() {

 expect(cMock.getTime()).andReturn(1);

 expect(cMock.getTime()).andReturn(2);

 expect(cMock.getTime()).andReturn(3);

 replay(cMock);

 ..

}

12/10/07 219343 Software verification and validation 17

Mocks: using & verifying

@Test public void testReminder() {
 expect(cMock.getTime()).andReturn(1); ...

 replay(cMock);

 rem.add(1,”hello1”);

 rem.add(2,”hello2”);

 rem.refresh();

 rem.refresh();

 rem.refresh();

 verify(cMock);

}

12/10/07 219343 Software verification and validation 18

What does EasyMock do?

 Checks the interaction.

 At the end, a call to verify makes
sure that every specified interaction is
called.

12/10/07 219343 Software verification and validation 19

Interactions

YourObject MockObject

First, you program
the interaction.

Then, check the
interactions.

Verify makes sure
that you every
interaction is made.

12/10/07 219343 Software verification and validation 20

More on Easy Mock
 See the demo.

 http://www.easymock.org/
 Document:

http://www.easymock.org/
EasyMock2_3_Documentation.html

12/10/07 219343 Software verification and validation 21

Note for JUnit

 Testing in a project
 Declare members as protected so that

testcases in the same package can see
it.

 If we want to place the testcases in
another directory, we can duplicates the
program package directory structure so
that the testcases are still in the same
package.

12/10/07 219343 Software verification and validation 22

Design for test

 Testing force you to reorganize your
design

 (More on this later)

12/10/07 219343 Software verification and validation 23

Conclusion

 Unit testing is important
 Mainly a partial correctness assertion

 Weak assertion / strong assertion

 Good test:
 RIGHT-BICEP

 Unit testing dependent systems
 Use stub and mock object

