
Exercises Lesson 08: Test Basics and Test Strategy Version 1.0

Name: Registration-Nb.:

 1 Test Basics

 1.1 What is the goal of Software Tests?

 1.2 Describe three software quality criteria and describe which tests could be
used to check them!

 1.3 Why is prioritization important in testing?

 1.4 Explain “White Box Testing”, “Black Box Testing”, and “Gray Box
Testing”

Software Test, Fall 2007/2008 Page 1 of 6
Uwe Gühl, Jittat Fakcharoenpholl 20/12/07

Exercises Lesson 08: Test Basics and Test Strategy Version 1.0

 1.5 What is the difference between a „Test Case“ and a „Test Scenario“?

 1.6 What is the meaning of “severity level” and “priority” in
defect management?

 2 Test Strategy

 2.1 What is the goal of the Test Strategy Phase?

Software Test, Fall 2007/2008 Page 2 of 6
Uwe Gühl, Jittat Fakcharoenpholl 20/12/07

Exercises Lesson 08: Test Basics and Test Strategy Version 1.0

 2.2 Discuss the advantages and disadvantages concerning the assignment of
the responsibility concerning test to

a. the Software vendor

b. the customer

c. Test specialists

 2.3 Describe possibilities to improve the test process!

Software Test, Fall 2007/2008 Page 3 of 6
Uwe Gühl, Jittat Fakcharoenpholl 20/12/07

Exercises Lesson 08: Test Basics and Test Strategy Version 1.0

3. Text layout
In this problem, you will write junit test cases for class TextLayout which takes a sequence of
words and their display styles, and computes their positions in a drawing area. You can download
TextLayout.java and a skeleton for TextLayoutTest.java from
http://garnet.cpe.ku.ac.th/~jtf/219343/. This implementation of TextLayout contain
some defect, and it will be great if your test case can reveal it.

You should send your solutions to problems 3.1 and 3.2 to jittat@gmail.com. Because they will
have the same file name, you can rename the solution to problem 3.1 to TextLayoutTest31.java.

The following diagram shows relevant classes.

An object of class TextLayout is created with the following arguments: an object of class
TextManager tm, drawing area width, and the space between words wordsep.

From the interface of TextLayout, you can see that it takes each word and its style incrementally
(method addWord). An example of using this method is shown below.

TextLayout to = new TextLayout(tm,100,5);
to.addWord("Hello", "Normal");
to.addWord("World", "Bold");

To get an information for computing layouts, TextLayout would call a method getDrawingSize
from TextManager, passing st and style as parameters, to compute the dimension of that word;
this method returns an object of TextDim. The dimension of a word is show below.

We now describe how class TextLayout find positions for words in the texts. The texts are divided
into lines. Words on the same line are vertically aligned so that they are on the same baseline.
TextLayout tries to fit as many words as possible in the same line, but make sure that the there is a
space of wordsep between every pair of words. The upHeight (downHeight) of a line is the

Software Test, Fall 2007/2008 Page 4 of 6
Uwe Gühl, Jittat Fakcharoenpholl 20/12/07

Thing
width

baselineupHeight

downHeight

Exercises Lesson 08: Test Basics and Test Strategy Version 1.0

maximum upHeight (downHeight) of words on that line.

After TextLayout receives each word, it recomputes the position of every word. The interface to
layout information are methods getWordCount, which returns the number of words received so far;
getXPos, and getYPos, which take the index to words (starting at 0) and return its x and y
positions. The co-ordinate of the upper-left corner of the drawing area is (0,0). A sample layout is
show below.

Note: The width of the containing box is specified as width, and the size of spaces between words
is specified as wordsep in the constructor. All words in a single line share the same baseline. The
top of each line (at upheight) matches the bottom (at downheight) of the previous line; see the word
“it” in the picture.

3.1 Testing TextLayout, mocking TextManager
Since we want to test TextLayout for any possible TextManager, we decide that we will mock
TextManager. (Note that TextManager is an interface.)

Write two interesting test cases for TextLayout (in class TextLayoutTest).

The following is a skeleton of TextLayoutTest.java.

import org.junit.Test;
import static org.junit.Assert.*;
import static org.easymock.EasyMock.*;

class TextDim {
 private int width, upheight, downheight;
 public TextDim(int w, int uh, int dh) {

width = w;
upheight = uh;
downheight = dh;

 }
 public int getWidth() { return width; }
 public int getUpHeight() { return upheight; }
 public int getDownHeight() { return downheight; }
}

interface TextManager {
 TextDim getDrawingSize(String st, String style);
}

interface Canvas { // this Canvas interface will be used in problem 3.2
 void drawString(int x, int y, String st, String style);
}

public class TextLayoutTest {
 // your tasks.
}

Software Test, Fall 2007/2008 Page 5 of 6
Uwe Gühl, Jittat Fakcharoenpholl 20/12/07

Exercises Lesson 08: Test Basics and Test Strategy Version 1.0

You must mock TextManager using EasyMock framework. Since TextLayout can call method
getDrawingSize for each word many times, when programming your mock you must specify this
behavior. You can do so by calling method atLeastOnce after calling expect as shown in an
example below.

TextManager tm = createMock(TextManager.class);
expect(tm.getDrawingSize("Hello", "Normal"))
 .andReturn(new TextDim(20,10,0)).atLeastOnce();
expect(tm.getDrawingSize("World", "Bold"))
 .andReturn(new TextDim(25,12,0)).atLeastOnce();

You can use getWordCount, getXPos, and getYPos to verify that TextLayout works correctly.

Note: your test case shouldn't be too trivial or too complicated. You might want to read problem
3.2 before you continue.

3.2 Testing TextLayout, mocking both TextManager and Canvas
We want our testing paradigm to move to interaction-based testing. So, we decide to drop three
state-checking methods getWordCount, getXPos, and getYPos from TextLayout. We still want to
test the class, but to verify its correctness, we need to look at its interaction with class Canvas,
which interacts with TextLayout through method draw. If you call method draw, passing in the
Canvas, TextLayout would use method drawString of Canvas to draw each word, from the first to
the last one.

Modify the test case in problem 3.1, so that it also mocks Canvas and the correctness of TextLayout
is verified through its interaction with the mocked canvas.

Software Test, Fall 2007/2008 Page 6 of 6
Uwe Gühl, Jittat Fakcharoenpholl 20/12/07

	 1 Test Basics
	 1.1 What is the goal of Software Tests?
	 1.2 Describe three software quality criteria and describe which tests could be used to check them!
	 1.3 Why is prioritization important in testing?
	 1.4 Explain “White Box Testing”, “Black Box Testing”, and “Gray Box Testing”
	 1.5 What is the difference between a „Test Case“ and a „Test Scenario“?
	 1.6 What is the meaning of “severity level” and “priority” in
defect management?

	 2 Test Strategy
	 2.1 What is the goal of the Test Strategy Phase?
	 2.2 Discuss the advantages and disadvantages concerning the assignment of the responsibility concerning test to
	 2.3 Describe possibilities to improve the test process!

