
Inspection

219343: Software Testing
Lesson 09-1 v1.0

Jittat Fakcharoenphol
Fall 2007/ 2008



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 2

Inspection

 According to Parnas and Lawford:
 Systematic approach to examining a 

program in detail
 To assess the quality of the software 

product in question, not the quality of 
the process used to develop the product



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 3

Handling complexities

 Use divide and conquer
 Examine small parts while making 

sure that
 nothing is overlooked
 the correctness of all inspected 

components implies the correctness of 
the whole product



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 4

Goal

 Inspection lies in between testing and 
formal verification

 Inspection seeks to compliment 
testing
 Make sure program corrects
 Also, checking coding style, naming 

conventions, maintainability 



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 5

Three reading techniques

 From [Dunsmore et al.]
 Checklist
 Use-case driven
 Abstraction-driven



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 6

Checklist

 Been around since 1970s
 Problems [Laitenberger & DeBaud]

 questions too general
 instruction missing
 detection biased towards previous 

defects
 See handout



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 7

Use case

 Check that each object is capable of 
responding correctly to all situations

 Force the inspector to consider the 
context in which an object is used



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 8

Use case: steps

 Creating scenarios
 Take each use case, derive a series of 

brief scenarios
 Using the scenarios

 trace on the sequence diagram
 when encountering the class under 

inspection, switch to code
 check decisions and state changes when 

inspecting the method
 verify the final state after the scenario is 

finished



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 9

Abstraction-driven

 "Localizing the delocalization."
 Create natural language abstraction 

for each part (method) of the 
program (while you go)
 should make later inspection easier, i.e., 

no further analysis of these is needed – 
the delocalization has been localized in 
the abstraction



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 10

Abstraction-driven: steps
 Analyze the interdependencies between 

classes
 Analyze the classes – starting with classes 

with the least dependencies
 Dependencies between methods within 

classes are analyzed
 Inspect the methods with least 

dependencies first
 Reverse engineer an abstract specification 

for each method
 understand external references
 state changes
 outputs


