
Inspection

219343: Software Testing
Lesson 09-1 v1.0

Jittat Fakcharoenphol
Fall 2007/ 2008



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 2

Inspection

 According to Parnas and Lawford:
 Systematic approach to examining a 

program in detail
 To assess the quality of the software 

product in question, not the quality of 
the process used to develop the product



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 3

Handling complexities

 Use divide and conquer
 Examine small parts while making 

sure that
 nothing is overlooked
 the correctness of all inspected 

components implies the correctness of 
the whole product



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 4

Goal

 Inspection lies in between testing and 
formal verification

 Inspection seeks to compliment 
testing
 Make sure program corrects
 Also, checking coding style, naming 

conventions, maintainability 



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 5

Three reading techniques

 From [Dunsmore et al.]
 Checklist
 Use-case driven
 Abstraction-driven



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 6

Checklist

 Been around since 1970s
 Problems [Laitenberger & DeBaud]

 questions too general
 instruction missing
 detection biased towards previous 

defects
 See handout



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 7

Use case

 Check that each object is capable of 
responding correctly to all situations

 Force the inspector to consider the 
context in which an object is used



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 8

Use case: steps

 Creating scenarios
 Take each use case, derive a series of 

brief scenarios
 Using the scenarios

 trace on the sequence diagram
 when encountering the class under 

inspection, switch to code
 check decisions and state changes when 

inspecting the method
 verify the final state after the scenario is 

finished



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 9

Abstraction-driven

 "Localizing the delocalization."
 Create natural language abstraction 

for each part (method) of the 
program (while you go)
 should make later inspection easier, i.e., 

no further analysis of these is needed – 
the delocalization has been localized in 
the abstraction



01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 10

Abstraction-driven: steps
 Analyze the interdependencies between 

classes
 Analyze the classes – starting with classes 

with the least dependencies
 Dependencies between methods within 

classes are analyzed
 Inspect the methods with least 

dependencies first
 Reverse engineer an abstract specification 

for each method
 understand external references
 state changes
 outputs


