Inspection

219343: Software Testing
Lesson 09-1 v1.0

Jittat Fakcharoenphol
Fall 2007/ 2008



Inspection

O According to Parnas and Lawford:

= Systematic approach to examining a
program in detail

= To assess the quality of the software
product in question, not the quality of
the process used to develop the product

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0



Handling complexities

0O Use divide and conquer

0O Examine small parts while making
sure that
= nothing is overlooked

= the correctness of all inspected
components implies the correctness of

the whole product

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0



Goal

O Inspection lies in between testing and
formal verification

O Inspection seeks to compliment
testing
= Make sure program corrects

= Also, checking coding style, naming
conventions, maintainability

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 4



Three reading techniques

O From [Dunsmore et al.]
= Checklist
= Use-case driven
= Abstraction-driven

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0



Checklist

O Been around since 1970s

O Problems [Laitenberger & DeBaud]
= questions too general

= jnstruction missing

= detection biased towards previous
defects

O See handout

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0



Use case

0O Check that each object is capable of
responding correctly to all situations

O Force the inspector to consider the
context in which an object is used

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0



Use case: steps

O Creating scenarios
= Take each use case, derive a series of

brief scenarios

0O Using the scenarios

trace on the sequence diagram

when encountering the class under
inspection, switch to code

check decisions and state changes when
inspecting the method

verify the final state after the scenario is
finished

01/11/08

Jittat, Uwe - Software-Test 09-1 v1.0



Abstraction-driven

0 "Localizing the delocalization.”

O Create natural language abstraction
for each part (method) of the
program (while you go)
= should make later inspection easier, i.e.,

no further analysis of these is needed -

the delocalization has been localized in
the abstraction

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0



Abstraction-driven: steps

O Analyze the interdependencies between
classes

O Analyze the classes — starting with classes
with the least dependencies

O Dependencies between methods within
classes are analyzed

O Inspect the methods with least
dependencies first

O Reverse engineer an abstract specification
for each method
= understand external references
= state changes
" Qoutputs

01/11/08 Jittat, Uwe - Software-Test 09-1 v1.0 10



