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Result of an analysis of more than 9000 IT projects 
[Sta13]

Introduction

* overrun budget 
and/or time

*

* 
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Why do projects fail? [Sta94]
1. Incomplete requirements 13.1%
2. Lack of user involvement 12.4%
3. Lack of resources 10.6%
4. Unrealistic expectations 9.9%
5. Lack of executive support  9.3%
6. Changing requirements and specifications 8.7%
7. Lack of planning 8.1%
8. System no longer needed  7.5%
9. Lack of IT Management 6.2%
10.Technology Illiteracy 4.3%

Other 9.9%

Introduction



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 5

Success factors for IT projects:  [Sta94]
1. User Involvement 15.9%
2. Executive Support 13.9%
3. Clear Statement of Requirements 13.0%
4. Proper Planning 9.6%
5. Realistic Expectations 8.2%
6. Smaller Project Milestones 7.7%
7. Competent Staff 7.2%
8. Ownership 5.3%
9. Clear Vision & Objectives 2.9%
10. Hard-Working, Focused Staff 2.4%
Other 13.9%

Introduction
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Introduction

Source of defects [Ric05]: 

 Requirements play a central role in IT projects
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Definitions

Requirement [IEEE610.90], [Win99]:

(1) A condition or capability needed by a user to 
solve a problem or achieve an objective.

(2) A condition or capability that must be met or 
possessed by a system or system component 
to satisfy a contract, standard, specification or 
other formally imposed documents.

(3) A documented representation of a condition or 
capability as in (1) or (2).
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Definitions

Requirements analysis [IEEE610.90], [Win99]:

(1) The process of studying user needs to arrive 
at a definition of system, hardware or software 
requirements. 

(2) The process of studying and refining system, 
hardware or software requirements. 
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Definitions

Requirements Engineer (1/2) [Mod14]
● Synonyms: Requirements Analyst, Functional 

Architect, Business Systems Analyst, Business Analyst 
(generic term). 

● There is no industry standards for the scope of the 
requirements engineer.
It's something between the IT business analyst and 
systems analyst.

● Abilities: A Requirements Engineer masters …
… subject area
… analysis
… information technology
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Definitions

Requirements Engineer (2/2) [Mod14] 
● Role description: 

Working with project stakeholders and end users to 

– detect, 

– understand, 

– analyse, and 

– document 

the requirements for a system in order to solve a given 
business problem.
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Definitions

Use Case [Wik14a]
● List of steps, typically defining interactions between an 

actor and a system, to achieve a goal.
Automated teller machine (ATM)

Raise money

Print account

Transfer money
to savings

Bank 
customer

Enter PIN

<<include>>

<<include>>
<<include>>

Example of a Use Case Diagram



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 12

Definitions

1. Enter customer data.
If customer is yet not registered  UC 12 Register 
customer.

2. Enter desired car category
3. Enter desired leasing period
4. If a car is available in the desired period:

1. Reserve a car
2. Enter credit card information
3. Print contract and sign
Otherwise:
Adapt item 2. or 3., if possible

Activities

The rental system is ready to get customer data and to realize a 
lease contractPost condition

Leasing is done, and the customer has signed the contract
Result

The rental system is ready to get customer data and to realize a 
lease contractPre condition

Customer asks agentTrigger

Customer, agentActors

A customer comes to the car rental agency and chooses a car 
which he rents for a fixed periodShort description

214 / Rent a carId / Name

Example of a 
Use Case Description  
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Definitions

User Story [Mou14]

Short, simple description of a feature told from the 
perspective of the person who desires the new 
capability, usually a user or customer of the 
system. Proposed template:

As a <type of user>, 
I want <some goal> 
so that <some reason>.

As a Scheduler I want 
to update a given 

appointment so that I 
could add another date.

As a Scheduler I want 
to update a given 

appointment so that I 
could add another date.

Example of a User Story
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Definitions

Business Scenario
(Synonym Business Use Case)
● A Business Scenario is a collection of related, 

structured activities or tasks, so that a particular 
customer achieves a particular goal.

● A Business Scenario is typically composed of a 
set of Use Cases (Use Case chains).
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Finding Requirements

● A goal of Requirements Engineering is to get a 
complete, consistent, modifiable, and traceable 
software requirement specification [Wie99].

● How to get “complete” requirements?
● Find “the right people”, e. g. in using

– Stakeholder analysis
– Environment analysis
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Finding Requirements

● There are many good ideas around how to 
identify requirements:

– Manuals of older / comparable systems
– Requirements workshops
– Interviews with stakeholder and end users
– Paper prototyping

● We will focus on identifying

– Business Scenarios 
– Non-Functional Requirements
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Business Scenarios

Top-Down Approach: Identifying requirements 
(here: Use Cases) out of Business Scenarios

Business Scenario 1

Business Scenario 2

Use Cases out of Business Scenarios 
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Business Scenarios

Example

1. User enters a search term

2. User gets a list of results

3. User chooses out of the list of results a 
document

4. User changes for the document the font size 
to 44 pixel

5. User overlays the document with a grid

6. User adopts setting for all documents
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UC 2

UC 3

UC 1

Business Scenarios

Example

1. User enters a search term

2. User gets a list of results

3. User chooses out of the list of results a 
document

4. User changes for the document the font size 
to 44 pixel

5. User overlays the document with a grid

6. User adopts setting for all documents
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Business Scenarios
Guideline

● A Business Scenario should describe a 
concrete, unambiguous, and complete action 
on process level.

● Definition of a main scenario, contenting all 
important features (success story)

● Definition of important branches as second step
● Definition of important exceptions / faults 

(e. g. what happens if a search finds no result)
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Business Scenarios
Guideline

● Use Case diagrams and activity diagrams as 
well as visualization with screenshots could be 
used for better communication.

● Active description with numbering of the steps 
● Avoid generalization like 

– “and so on”

– “etc.”

– “easy”

– “different options”
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Business Scenarios
Proceeding

There are several possibilities to identify Business 
Scenarios. 

It's important to find people who could help in 
defining the Business Scenarios.
● Interviews
● Paper Prototyping
● Desktop Tests
● Workshops
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Business Scenarios
Advantages

● … bring forward the common understanding of 
business processes and their importance

● … are a basic for identification of Use Cases
● … basic for project controlling (Which Business 

Scenario will be realized in which release?)
● … help in prioritization of features and Use 

Cases
● … show from the end user point of view 

advantages of specified features
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Non-Functional Requirements
Motivation

● Unknown Non-Funtional Requirements may 
cause problems in IT projects, if so called 
“self evident requirements” are not fulfilled 
(security, performance, load).

● Requirement documents often leave the area 
“Non-Functional Requirements” empty or 
imprecise (“fast”, “easy to use”, “secure”)
→ IT Architecture cannot follow conditions
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Non-Functional Requirements
Motivation

● Late changes in software architecture are often 
complex and time-consuming
→ Early communication and common 
understanding concerning non-functional 
requirements is necessary

● Proposal: Proposal: 
Early identification of non-functional 
requirements!

● Presented proceeding was applied successfully 
in a media company



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 26

Non-Functional Requirements
ISO/IEC 9126 Quality Model

Software quality – ISO/IEC 9126 [Wik14]
● ISO/IEC 9126 Software engineering – Product 

quality 
– is an international standard for the evaluation of 

software quality – focusing on the product.
– tries to develop a common understanding of the 

project's objectives and goals

● Hint:
Since 2011 there is a successor available:
ISO 25010 has eight product quality characteristics (in contrast 
to ISO 9126's six), and 39 subcharacteristics
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Non-Functional Requirements
ISO/IEC 9126 Quality Model

1 Functionality

2 Reliability

3 Usability 

4 Efficiency

5 Maintainability 

6 Portability 



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 28

Non-Functional Requirements
Proceeding

Execution of a workshop; 
Agenda could cover:

1.Current Status
Goal: Common understanding

i. Overview, status of requirements

ii.System context, general set-up, actors, interfaces 
to systems to be considered

iii.System architecture ideas

2.Start: Presentation and explanation of non-
functional requirements
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Non-Functional Requirements
Proceeding

Agenda (extract)

3.Prio: Prioritization of characteristic / sub-
characteristic criteria by requirements 
engineers / development

4.Tasks: Definition of concrete quality criteria / 
acceptance criteria, assigning activities
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Non-Functional Requirements
Proceeding – Example (Start)

High priority Medium priority Low priority

1.2. Accuracy

6.3. Replaceability

5.4. Testability

4.1. Time Behaviour
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Non-Functional Requirements
Proceeding – Example (Prio)

High priority Medium priority Low priority

1.2. Accuracy



6.3. Replaceability

5.4. Testability



4.1. Time Behaviour



Prioritization done by workshop participants, IT (red dots), Business (blue dots)
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Non-Functional Requirements
Proceeding – Example (Tasks)

● Collection of requirements, acceptance criteria, 
tasks to be executed, etc.
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Writing Requirements

● Assumption: Requirements / Ideas are found
– … as text fragments

– … as minutes of workshops

– … as pictures of story cards collected on a wall

● Now look into it. 
Goal: Writing good requirements
HowTo: Using guidelines
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Writing Requirements

Good requirements are [Sca11]:
● Correct: They have to say the right things.

● Consistent : They can’t contradict each other.

● Unambiguous: Each must have one interpretation.

● Complete: They cover all the important stuff.

● Relevant: Each must meet a customer need.

● Testable: There must be a way to tell if they are 
satisfied.

● Traceable: There must be a way to determine their 
origin.
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Writing Requirements
Guidelines

● KISS – Keep it simple and smart
– Keep sentences and paragraphs short. 

– Use the active voice. 

– Use proper grammar, spelling, and punctuation. 

– Use terms consistently and define them in a 
glossary or data dictionary.

Glossary to speak “the same language”.
There should be only one common glossary.

There should be one responsible.

[Wie99]

Quality 
measure
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Writing Requirements
Guidelines

● Prioritize the requirements!
– High priority: Must – to be realized in the 

next iteration, e.g. product release.

– Medium priority: Should – necessary. 

– Low priority: Could – Nice to have
if there is enough time.

● Excerpt (out of agile software development)
In iteration planning requirements are 

selected out of a product backlog to be realized 
– following prioritization by customer.
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Writing Requirements
Guidelines

● Add to defined requirements acceptance criteria
– Use concrete examples.

– Define test cases to be passed.

● Excerpt (out of agile software development)
“Definition of done” is an agreement to 

decide, when a realization of a requirement 
could be accepted by the customer.
E.g. presentation successful, automated test 
cases passed.
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Writing Requirements
Guidelines

● Use the “right” granularity
– A helpful granularity guideline is to write individually 

testable requirements. 
If you can think of a small number of related tests to 
verify correct implementation of a requirement, it is 
probably written at the right level of detail.

– Watch out for multiple requirements that have been 
aggregated into a single statement.  "and" / "or" in a 
requirement 
 Several requirements might have been 
combined. 

[Wie99]



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 39

Writing Requirements
Guidelines

● Consistent level of detail
– Not too detailed

For example, "A valid color code shall be R for red" 
and "A valid color code shall be G for green" might 
be split out as separate requirements.

– Not too general
For example, "The product shall respond to editing 
directives entered by voice" describes an entire 
subsystem, not a single functional requirement.

[Wie99]
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Writing Requirements
Guidelines

● Once and only once
– Avoid stating requirements redundantly in the 

specification. 

– Reason
If there are multiple instances of requirements:

● Difficult maintenance of the requirements specification 
document 

● Source for inconsistencies, if not all redundant 
requirements get updated at the same time 

[Wie99]
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Writing Requirements
Guidelines

● Change perspective
– To see if a requirement statement is sufficiently well 

defined, read it from the developer’s perspective. 

– Mentally add the phrase, "call me when you’re 
done" to the end of the requirement and see if that 
makes you nervous!

● Use check lists, e.g. for a use case descriptions

[Wie99]
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Writing Requirements
Example: User Stories

● User Stories are high-level requirements
● Large User Stories are known as Epics 

(compare to Business Scenario) 
– typically too big to be implemented in an iteration  

● User Stories are often written on index cards or sticky 
notes, and stored on walls.

● They shift the focus from 
writing about features 
to discussing them. 

● User Story is something like
a promise to talk.

As a Scheduler I want 
to update a given 

appointment so that I 
could add another date.

As a Scheduler I want 
to update a given 

appointment so that I 
could add another date.

Example of a User Story
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Writing Requirements
Example: User Stories

● Well written user stories should follow the 
INVEST model [Wak03]
–  I ndependent – no overlap, no dependencies
– N egotiable – captures the essence, not details
– V aluable – a specified value for the customer
– E stimable – to help in planning and prioritization
– S mall – should be conducted in a sprint
– T T estable – more effective, if tests were written 

before implementation
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Changing Requirements

● Imagine: In a 2 years project all the 
requirements defined in the first 2 months get 
realized as specified …

What do you think?

● If we don't want to take the requirements “as is” 
we have to look into it and to adapt in case.
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Changing Requirements

Possible reasons:
● Stakeholder does not like delivered solution.
● Market changed.

Early changes could be required after reviews.
Review Technique: Try to be active:
● Problems?

Ask questions!
● Proposals?

Propose better statements!

[Wie99]
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Changing Requirements

Regular look at the requirements as they are 
living!
● Prioritization

Focus on the most important requirements and 
on the requirements to be implemented next.

● Enforce Communication
Requirements Engineer  Developer  Tester 

● Regular Milestones, short development cycles
Regular Feedback concerning implementation 
of requirements.
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Changing Requirements

Develop project culture: 
● Love Changes!

– Changes are okay – better to change instead of 
implementing something “wrong”!

– Clear rules have to be defined, agreed and followed 
(Change Management Process).

● Love Defects!
– The earlier we detect defects, the cheaper the 

elimination.

– All defects we detect, the customer won't find.
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Changing Requirements

● Ideas as discussed before result in 
“Agile software development”; example Scrum:
– Basics: User Stories as “atomic requirements”.
– Collection of User Stories as basic wish list 

what makes the product great.
– Regular planning: Agreement, which user stories to 

be implemented in next sprint
→ Following prioritization by customer.

– Regular review: Acceptance of delivered solution. 



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 49

Changing Requirements

● Ideas as discussed before result in 
“Agile software development”; example Scrum

http://en.wikipedia.org/wiki/File:Scrum_process.svg



Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 50

Summary (1/2)

● Requirements Engineering 
… to get better projects
… to face main problems of IT projects.

● First activity: Identification of requirements.
● Business Scenarios

– to focus on business related requirements
– to find Use Cases with top down approach)
– to implement the most important 

requirements first.
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Summary (2/2)

● Non-Functional Requirements

– to be taken serious
– to be identified e.g. with ISO / IEC 9126 as 

check list.
● There are a lot of techniques, “how-to”, and 

ideas to identify, to write, and to update 
requirements.

● A constructive, willing to learn organisation is 
extremely helpful for successful requirements 
engineering.
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Want to learn more?

● Professional organizations, e.g.

– Americas Requirements Engineering Association [ARA14] 

– International Requirements Engineering Board, [IREB14]
→ offer a certification program to get “Certified Professional 
for Requirements Engineering”.

● Books

– Klaus Pohl, Chris Rupp: Requirements Engineering 
Fundamentals, 1st edition, Rocky Nook Inc., 2011

– Karl E. Wiegers: More About Software Requirements: Thorny 
Issues and Practical Advice, Microsoft Press, 2005

– Ian Alexander, Ljerka Beus-Dukic: Discovering Requirements 
– How to Specify Products and Services, Wiley, 2009
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