
Lesson 4
Requirements

V1.0

Uwe Gühl

Winter 2013 / 2014

Software Testing

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 2

Contents

● Introduction
● Definitions
● Finding Requirements

Business Scenarios and Non-Functional Requirements

● Writing Requirements
Guidelines

● Changing Requirements
● Sources / More

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 3

Result of an analysis of more than 9000 IT projects
[Sta13]

Introduction

* overrun budget
and/or time

*

*

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 4

Why do projects fail? [Sta94]
1. Incomplete requirements 13.1%
2. Lack of user involvement 12.4%
3. Lack of resources 10.6%
4. Unrealistic expectations 9.9%
5. Lack of executive support 9.3%
6. Changing requirements and specifications 8.7%
7. Lack of planning 8.1%
8. System no longer needed 7.5%
9. Lack of IT Management 6.2%
10.Technology Illiteracy 4.3%

Other 9.9%

Introduction

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 5

Success factors for IT projects: [Sta94]
1. User Involvement 15.9%
2. Executive Support 13.9%
3. Clear Statement of Requirements 13.0%
4. Proper Planning 9.6%
5. Realistic Expectations 8.2%
6. Smaller Project Milestones 7.7%
7. Competent Staff 7.2%
8. Ownership 5.3%
9. Clear Vision & Objectives 2.9%
10. Hard-Working, Focused Staff 2.4%
Other 13.9%

Introduction

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 6

Introduction

Source of defects [Ric05]:

 Requirements play a central role in IT projects

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 7

Definitions

Requirement [IEEE610.90], [Win99]:

(1) A condition or capability needed by a user to
solve a problem or achieve an objective.

(2) A condition or capability that must be met or
possessed by a system or system component
to satisfy a contract, standard, specification or
other formally imposed documents.

(3) A documented representation of a condition or
capability as in (1) or (2).

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 8

Definitions

Requirements analysis [IEEE610.90], [Win99]:

(1) The process of studying user needs to arrive
at a definition of system, hardware or software
requirements.

(2) The process of studying and refining system,
hardware or software requirements.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 9

Definitions

Requirements Engineer (1/2) [Mod14]
● Synonyms: Requirements Analyst, Functional

Architect, Business Systems Analyst, Business Analyst
(generic term).

● There is no industry standards for the scope of the
requirements engineer.
It's something between the IT business analyst and
systems analyst.

● Abilities: A Requirements Engineer masters …
… subject area
… analysis
… information technology

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 10

Definitions

Requirements Engineer (2/2) [Mod14]
● Role description:

Working with project stakeholders and end users to

– detect,

– understand,

– analyse, and

– document

the requirements for a system in order to solve a given
business problem.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 11

Definitions

Use Case [Wik14a]
● List of steps, typically defining interactions between an

actor and a system, to achieve a goal.
Automated teller machine (ATM)

Raise money

Print account

Transfer money
to savings

Bank
customer

Enter PIN

<<include>>

<<include>>
<<include>>

Example of a Use Case Diagram

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 12

Definitions

1. Enter customer data.
If customer is yet not registered  UC 12 Register
customer.

2. Enter desired car category
3. Enter desired leasing period
4. If a car is available in the desired period:

1. Reserve a car
2. Enter credit card information
3. Print contract and sign
Otherwise:
Adapt item 2. or 3., if possible

Activities

The rental system is ready to get customer data and to realize a
lease contractPost condition

Leasing is done, and the customer has signed the contract
Result

The rental system is ready to get customer data and to realize a
lease contractPre condition

Customer asks agentTrigger

Customer, agentActors

A customer comes to the car rental agency and chooses a car
which he rents for a fixed periodShort description

214 / Rent a carId / Name

Example of a
Use Case Description 

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 13

Definitions

User Story [Mou14]

Short, simple description of a feature told from the
perspective of the person who desires the new
capability, usually a user or customer of the
system. Proposed template:

As a <type of user>,
I want <some goal>
so that <some reason>.

As a Scheduler I want
to update a given

appointment so that I
could add another date.

As a Scheduler I want
to update a given

appointment so that I
could add another date.

Example of a User Story

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 14

Definitions

Business Scenario
(Synonym Business Use Case)
● A Business Scenario is a collection of related,

structured activities or tasks, so that a particular
customer achieves a particular goal.

● A Business Scenario is typically composed of a
set of Use Cases (Use Case chains).

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 15

Finding Requirements

● A goal of Requirements Engineering is to get a
complete, consistent, modifiable, and traceable
software requirement specification [Wie99].

● How to get “complete” requirements?
● Find “the right people”, e. g. in using

– Stakeholder analysis
– Environment analysis

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 16

Finding Requirements

● There are many good ideas around how to
identify requirements:

– Manuals of older / comparable systems
– Requirements workshops
– Interviews with stakeholder and end users
– Paper prototyping

● We will focus on identifying

– Business Scenarios
– Non-Functional Requirements

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 17

Business Scenarios

Top-Down Approach: Identifying requirements
(here: Use Cases) out of Business Scenarios

Business Scenario 1

Business Scenario 2

Use Cases out of Business Scenarios

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 18

Business Scenarios

Example

1. User enters a search term

2. User gets a list of results

3. User chooses out of the list of results a
document

4. User changes for the document the font size
to 44 pixel

5. User overlays the document with a grid

6. User adopts setting for all documents

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 19

UC 2

UC 3

UC 1

Business Scenarios

Example

1. User enters a search term

2. User gets a list of results

3. User chooses out of the list of results a
document

4. User changes for the document the font size
to 44 pixel

5. User overlays the document with a grid

6. User adopts setting for all documents

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 20

Business Scenarios
Guideline

● A Business Scenario should describe a
concrete, unambiguous, and complete action
on process level.

● Definition of a main scenario, contenting all
important features (success story)

● Definition of important branches as second step
● Definition of important exceptions / faults

(e. g. what happens if a search finds no result)

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 21

Business Scenarios
Guideline

● Use Case diagrams and activity diagrams as
well as visualization with screenshots could be
used for better communication.

● Active description with numbering of the steps
● Avoid generalization like

– “and so on”

– “etc.”

– “easy”

– “different options”

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 22

Business Scenarios
Proceeding

There are several possibilities to identify Business
Scenarios.

It's important to find people who could help in
defining the Business Scenarios.
● Interviews
● Paper Prototyping
● Desktop Tests
● Workshops

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 23

Business Scenarios
Advantages

● … bring forward the common understanding of
business processes and their importance

● … are a basic for identification of Use Cases
● … basic for project controlling (Which Business

Scenario will be realized in which release?)
● … help in prioritization of features and Use

Cases
● … show from the end user point of view

advantages of specified features

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 24

Non-Functional Requirements
Motivation

● Unknown Non-Funtional Requirements may
cause problems in IT projects, if so called
“self evident requirements” are not fulfilled
(security, performance, load).

● Requirement documents often leave the area
“Non-Functional Requirements” empty or
imprecise (“fast”, “easy to use”, “secure”)
→ IT Architecture cannot follow conditions

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 25

Non-Functional Requirements
Motivation

● Late changes in software architecture are often
complex and time-consuming
→ Early communication and common
understanding concerning non-functional
requirements is necessary

● Proposal: Proposal:
Early identification of non-functional
requirements!

● Presented proceeding was applied successfully
in a media company

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 26

Non-Functional Requirements
ISO/IEC 9126 Quality Model

Software quality – ISO/IEC 9126 [Wik14]
● ISO/IEC 9126 Software engineering – Product

quality
– is an international standard for the evaluation of

software quality – focusing on the product.
– tries to develop a common understanding of the

project's objectives and goals

● Hint:
Since 2011 there is a successor available:
ISO 25010 has eight product quality characteristics (in contrast
to ISO 9126's six), and 39 subcharacteristics

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 27

Non-Functional Requirements
ISO/IEC 9126 Quality Model

1 Functionality

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 28

Non-Functional Requirements
Proceeding

Execution of a workshop;
Agenda could cover:

1.Current Status
Goal: Common understanding

i. Overview, status of requirements

ii.System context, general set-up, actors, interfaces
to systems to be considered

iii.System architecture ideas

2.Start: Presentation and explanation of non-
functional requirements

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 29

Non-Functional Requirements
Proceeding

Agenda (extract)

3.Prio: Prioritization of characteristic / sub-
characteristic criteria by requirements
engineers / development

4.Tasks: Definition of concrete quality criteria /
acceptance criteria, assigning activities

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 30

Non-Functional Requirements
Proceeding – Example (Start)

High priority Medium priority Low priority

1.2. Accuracy

6.3. Replaceability

5.4. Testability

4.1. Time Behaviour

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 31

Non-Functional Requirements
Proceeding – Example (Prio)

High priority Medium priority Low priority

1.2. Accuracy



6.3. Replaceability

5.4. Testability



4.1. Time Behaviour



Prioritization done by workshop participants, IT (red dots), Business (blue dots)

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 32

Non-Functional Requirements
Proceeding – Example (Tasks)

● Collection of requirements, acceptance criteria,
tasks to be executed, etc.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 33

Writing Requirements

● Assumption: Requirements / Ideas are found
– … as text fragments

– … as minutes of workshops

– … as pictures of story cards collected on a wall

● Now look into it.
Goal: Writing good requirements
HowTo: Using guidelines

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 34

Writing Requirements

Good requirements are [Sca11]:
● Correct: They have to say the right things.

● Consistent : They can’t contradict each other.

● Unambiguous: Each must have one interpretation.

● Complete: They cover all the important stuff.

● Relevant: Each must meet a customer need.

● Testable: There must be a way to tell if they are
satisfied.

● Traceable: There must be a way to determine their
origin.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 35

Writing Requirements
Guidelines

● KISS – Keep it simple and smart
– Keep sentences and paragraphs short.

– Use the active voice.

– Use proper grammar, spelling, and punctuation.

– Use terms consistently and define them in a
glossary or data dictionary.

Glossary to speak “the same language”.
There should be only one common glossary.

There should be one responsible.

[Wie99]

Quality
measure

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 36

Writing Requirements
Guidelines

● Prioritize the requirements!
– High priority: Must – to be realized in the

next iteration, e.g. product release.

– Medium priority: Should – necessary.

– Low priority: Could – Nice to have
if there is enough time.

● Excerpt (out of agile software development)
In iteration planning requirements are

selected out of a product backlog to be realized
– following prioritization by customer.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 37

Writing Requirements
Guidelines

● Add to defined requirements acceptance criteria
– Use concrete examples.

– Define test cases to be passed.

● Excerpt (out of agile software development)
“Definition of done” is an agreement to

decide, when a realization of a requirement
could be accepted by the customer.
E.g. presentation successful, automated test
cases passed.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 38

Writing Requirements
Guidelines

● Use the “right” granularity
– A helpful granularity guideline is to write individually

testable requirements.
If you can think of a small number of related tests to
verify correct implementation of a requirement, it is
probably written at the right level of detail.

– Watch out for multiple requirements that have been
aggregated into a single statement. "and" / "or" in a
requirement
 Several requirements might have been
combined.

[Wie99]

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 39

Writing Requirements
Guidelines

● Consistent level of detail
– Not too detailed

For example, "A valid color code shall be R for red"
and "A valid color code shall be G for green" might
be split out as separate requirements.

– Not too general
For example, "The product shall respond to editing
directives entered by voice" describes an entire
subsystem, not a single functional requirement.

[Wie99]

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 40

Writing Requirements
Guidelines

● Once and only once
– Avoid stating requirements redundantly in the

specification.

– Reason
If there are multiple instances of requirements:

● Difficult maintenance of the requirements specification
document

● Source for inconsistencies, if not all redundant
requirements get updated at the same time

[Wie99]

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 41

Writing Requirements
Guidelines

● Change perspective
– To see if a requirement statement is sufficiently well

defined, read it from the developer’s perspective.

– Mentally add the phrase, "call me when you’re
done" to the end of the requirement and see if that
makes you nervous!

● Use check lists, e.g. for a use case descriptions

[Wie99]

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 42

Writing Requirements
Example: User Stories

● User Stories are high-level requirements
● Large User Stories are known as Epics

(compare to Business Scenario)
– typically too big to be implemented in an iteration

● User Stories are often written on index cards or sticky
notes, and stored on walls.

● They shift the focus from
writing about features
to discussing them.

● User Story is something like
a promise to talk.

As a Scheduler I want
to update a given

appointment so that I
could add another date.

As a Scheduler I want
to update a given

appointment so that I
could add another date.

Example of a User Story

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 43

Writing Requirements
Example: User Stories

● Well written user stories should follow the
INVEST model [Wak03]
– I ndependent – no overlap, no dependencies
– N egotiable – captures the essence, not details
– V aluable – a specified value for the customer
– E stimable – to help in planning and prioritization
– S mall – should be conducted in a sprint
– T T estable – more effective, if tests were written

before implementation

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 44

Changing Requirements

● Imagine: In a 2 years project all the
requirements defined in the first 2 months get
realized as specified …

What do you think?

● If we don't want to take the requirements “as is”
we have to look into it and to adapt in case.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 45

Changing Requirements

Possible reasons:
● Stakeholder does not like delivered solution.
● Market changed.

Early changes could be required after reviews.
Review Technique: Try to be active:
● Problems?

Ask questions!
● Proposals?

Propose better statements!

[Wie99]

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 46

Changing Requirements

Regular look at the requirements as they are
living!
● Prioritization

Focus on the most important requirements and
on the requirements to be implemented next.

● Enforce Communication
Requirements Engineer  Developer  Tester

● Regular Milestones, short development cycles
Regular Feedback concerning implementation
of requirements.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 47

Changing Requirements

Develop project culture:
● Love Changes!

– Changes are okay – better to change instead of
implementing something “wrong”!

– Clear rules have to be defined, agreed and followed
(Change Management Process).

● Love Defects!
– The earlier we detect defects, the cheaper the

elimination.

– All defects we detect, the customer won't find.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 48

Changing Requirements

● Ideas as discussed before result in
“Agile software development”; example Scrum:
– Basics: User Stories as “atomic requirements”.
– Collection of User Stories as basic wish list

what makes the product great.
– Regular planning: Agreement, which user stories to

be implemented in next sprint
→ Following prioritization by customer.

– Regular review: Acceptance of delivered solution.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 49

Changing Requirements

● Ideas as discussed before result in
“Agile software development”; example Scrum

http://en.wikipedia.org/wiki/File:Scrum_process.svg

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 50

Summary (1/2)

● Requirements Engineering
… to get better projects
… to face main problems of IT projects.

● First activity: Identification of requirements.
● Business Scenarios

– to focus on business related requirements
– to find Use Cases with top down approach)
– to implement the most important

requirements first.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 51

Summary (2/2)

● Non-Functional Requirements

– to be taken serious
– to be identified e.g. with ISO / IEC 9126 as

check list.
● There are a lot of techniques, “how-to”, and

ideas to identify, to write, and to update
requirements.

● A constructive, willing to learn organisation is
extremely helpful for successful requirements
engineering.

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 52

Want to learn more?

● Professional organizations, e.g.

– Americas Requirements Engineering Association [ARA14]

– International Requirements Engineering Board, [IREB14]
→ offer a certification program to get “Certified Professional
for Requirements Engineering”.

● Books

– Klaus Pohl, Chris Rupp: Requirements Engineering
Fundamentals, 1st edition, Rocky Nook Inc., 2011

– Karl E. Wiegers: More About Software Requirements: Thorny
Issues and Practical Advice, Microsoft Press, 2005

– Ian Alexander, Ljerka Beus-Dukic: Discovering Requirements
– How to Specify Products and Services, Wiley, 2009

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 53

Sources (1/2)

[ARA14] Americas Requirements Engineering Association, http://a-re-a.org/

[Bus90] Bush, M.: Software Quality: The use of formal inspections at the Jet Propulsion
Laboratory. In: Proc. 12th ICSE, p. 196-199, IEEE 1990

[Dus03] Elfriede Dustin: Effective Software Testing - 50 Specific Ways to Improve Your
Testing, Pearson Education, Inc. 2003

[FLS00] Frühauf, K.; Ludewig, J,; Sandmayr, H.: Software-Prüfung: eine Fibel. vdf, Verlag
der Fachvereine, Zürich, 4. Aufl. 2000

[GG96] Gilb, T.; Graham, D.: Software Inspections. Addison-Wesley, 1996

[Mou14] Mountain Goat: User Stories; An Agile Requirements Approach,
http://www.mountaingoatsoftware.com/agile/user-stories., 2014

[IEEE610.90] IEEE Standard Glossary of Software Engineering Terminology IEEE
Standard 610, IEEE, New York, 1990

[IREB14] International Requirements Engineering Board, 2014, http://www.ireb.org/

[Mod14] MODERNanalyst.com: The Requirements Engineer Role;
http://www.modernanalyst.com/TheProfession/Roles/RequirementsEngineer/tabid/188/De
fault.aspx, 2014

Winter 2013 / 2014 Uwe Gühl - Software Test 04 v1.0 54

Sources (2/2)

[Ric05] Randall W. Rice: STBC The Economics of Testing,
http://www.riceconsulting.com/public_pdf/STBC-WM.pdf, 2005

[Sca11] Christopher Scaffidi: Requirements, Lecture, 2011,
http://web.engr.oregonstate.edu/~cscaffid/courses/CS361_F11/lecture3-requirements.ppt

[Sta94] The Standish Group, Standish Group survey 1994

[Sta13] The Standish Group: CHAOS MANIFESTO 2013; ChaosManifesto2013.pdf

[Wak03] Bill Wake: INVEST in Good Stories, and SMART Tasks, 2003,
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

[Wie99] Karl E. Wiegers: Writing Quality Requirements, 1999,
http://processimpact.com/articles/qualreqs.html

[Wik14] Wikipedia: ISO/IEC 9126, 2014, http://en.wikipedia.org/wiki/ISO/IEC_9126

[Wik14a] Wikipedia: Use Case, 2014, http://en.wikipedia.org/wiki/Use_case

[Win99] Mario Winter: Qualitätssicherung für objektorientierte Software:
Anforderungsermittlung und Test gegen die Anforderungsspezifikation, 1999,
http://deposit.fernuni-hagen.de/2527/1/dissWinter.pdf

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54

