

Code Coverage and
Cyclomatic Complexity

Arnan Maipradit
Kanin Sirisith

Nutnicha Charoenporn
Thai Pangsakulyanont

Source Code QA

–Esprima Unit Test Page 
http://esprima.org/test/index.html

“A software project is only as good as its
QA workflow..”

Source Code QA

Idea: make it as easy as possible to change code
http://www.agile-process.org/change.html

Software Rot

Refactoring

Technical Debts

http://martinfowler.com/bliki/TechnicalDebt.html

Hard Way

The Right Way

Easy Way

Quick and Dirty

–Stack Overflow Answer to question “What is technical debt?” 
http://stackoverflow.com/a/1258787/559913

“It is a debt that you incur every time you
avoid doing the right thing.”

–Stack Overflow Answer to question “What is technical debt?” 
http://stackoverflow.com/a/1258787/559913

“It is a debt that you incur every time you
avoid doing the right thing.”

“it is the easy thing to do in the short term..
however over time, the interest you pay on this

debt is humongous”

–Stack Overflow Answer to question “What is technical debt?” 
http://stackoverflow.com/a/1258787/559913

“It is a debt that you incur every time you
avoid doing the right thing.”

“it is the easy thing to do in the short term..
however over time, the interest you pay on this

debt is humongous”

“…to a point where a rewrite of the app is more
feasible than maintaining or changing it”

function getKey(key) {
 if (key == 'S') return 0;
 if (key == 'D') return 1;
 if (key == 'F') return 2;
 if (key == 'SPACE') return 3;
 if (key == 'J') return 4;
 if (key == 'K') return 5;
 if (key == 'L') return 6;
 return null;
}

Implement
Key Mapping System

function getKey(key) {
 if (key == 'S' || key == 'Q') return 0;
 if (key == 'D' || key == 'W') return 1;
 if (key == 'F' || key == 'E') return 2;
 if (key == 'SPACE') return 3;
 if (key == 'J' || key == 'U') return 4;
 if (key == 'K' || key == 'I') return 5;
 if (key == 'L' || key == 'O') return 6;
 return null;
}

More complexity → Harder to change

Fix one bug, another bug appears!

Fix one bug, another bug appears!

More subtle! Harder to find!
More expensive to fix!

–Don Wells, Surprise! Software rots!, 2009. 
http://www.agile-process.org/change.html

“[Y]ou can not effectively increase
software quality at the end of the project
by testing and fixing bugs. It remains low

quality but with fewer bugs.”

How to keep software
quality high?

Measure them!

Code Quality Measures
(a.k.a. software metrics)

Code Quality Measures
(a.k.a. software metrics)

code coverage

cyclomatic
complexitylines of code

abc metrics

churn

production/test
code ratio

flog

wow

Code Coverage

% of code “covered” by test

Ensure that your tests are
actually testing your code

More code coverage

More code coverage

More thoroughly tested

More code coverage

More thoroughly tested

Lower chance of bugs

How does it work?

Instrumentation

function max(a, b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}
!

Instrumentation

function max(a, b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}
!

function max(a,b) {
 check.f['1']++; check.s['2']++;
 if (a > b) {
 check.b['1'][0]++;
 check.s['3']++;
 return a;
 } else {
 check.b['1'][1]++;
 check.s['4']++;
 return b;
 }
}

Run (“exercise”) the instrumented code
(e.x. unit test, functional test, …)

Run (“exercise”) the instrumented code
(e.x. unit test, functional test, …)

Report is generated by the tool

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/31/14, 9:25 AM

if path not taken

else path not takenstatement not covered

branch not covered

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 1/29/14, 1:57 PM

WHAT?!

Coverage Types

Function Coverage
function max(a, b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}
!
function min(a, b) {
 if (a < b) {
 return a;
 } else {
 return b;
 }
}
!

Function Coverage
function max(a, b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}
!
function min(a, b) {
 if (a < b) {
 return a;
 } else {
 return b;
 }
}
!

✔

✔

Statement Coverage (C0)
function max(a, b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}
!
function min(a, b) {
 if (a < b) {
 return a;
 } else {
 return b;
 }
}
!

Statement Coverage (C0)
function max(a, b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}
!
function min(a, b) {
 if (a < b) {
 return a;
 } else {
 return b;
 }
}
!

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

Branch Coverage (C1)
function binary_search(a, l, r, v) {
 if (!r) {
 r = a.length - 1;
 } // else
 var m = Math.floor((l + r) / 2);
 if (a[m] == v) {
 return m;
 } else if (a[m] > v) {
 return binary_search(a, l, r - 1, v);
 } else {
 return binary_search(a, l + 1, r, v);
 }
}

Branch Coverage (C1)
function binary_search(a, l, r, v) {
 if (!r) {
 r = a.length - 1;
 } // else
 var m = Math.floor((l + r) / 2);
 if (a[m] == v) {
 return m;
 } else if (a[m] > v) {
 return binary_search(a, l, r - 1, v);
 } else {
 return binary_search(a, l + 1, r, v);
 }
}

✔

✔

✔

✔

✔

✔

Branch Coverage (C1)

if (f(mid) && (mid == 0 || !f(mid - 1))) {

Branch Coverage (C1)

if (f(mid) && (mid == 0 || !f(mid - 1))) {

✔ ✔ ✔

Path Coverage (C2)
function binary_search(a, l, r, v) {
 if (!r) {
 r = a.length - 1;
 }
 var m = Math.floor((l + r) / 2);
 if (a[m] == v) {
 return m;
 } else if (a[m] > v) {
 return binary_search(a, l, r - 1, v);
 } else {
 return binary_search(a, l + 1, r, v);
 }
}

(1)
(2)

!
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Path Coverage (C2)
function binary_search(a, l, r, v) {
 if (!r) {
 r = a.length - 1;
 }
 var m = Math.floor((l + r) / 2);
 if (a[m] == v) {
 return m;
 } else if (a[m] > v) {
 return binary_search(a, l, r - 1, v);
 } else {
 return binary_search(a, l + 1, r, v);
 }
}

(1)
(2)

!
(3)
(4)
(5)
(6)
(7)
(8)
(9)

1

2

3 4

5

6

7

8

9

Path Coverage (C2)
function binary_search(a, l, r, v) {
 if (!r) {
 r = a.length - 1;
 }
 var m = Math.floor((l + r) / 2);
 if (a[m] == v) {
 return m;
 } else if (a[m] > v) {
 return binary_search(a, l, r - 1, v);
 } else {
 return binary_search(a, l + 1, r, v);
 }
}

(1)
(2)

!
(3)
(4)
(5)
(6)
(7)
(8)
(9)

1

2

3 4

5

6

7

8

9

Possible paths
1→2→3→4→5
1→2→3→4→6→7
1→2→3→4→6→8→9
1→3→4→5
1→3→4→6→7
1→3→4→6→8→9

✔

✔

✔

✔

✔

✔

Path Coverage (C2)
function binary_search(a, l, r, v) {
 if (!r) {
 r = a.length - 1;
 }
 var m = Math.floor((l + r) / 2);
 if (a[m] == v) {
 return m;
 } else if (a[m] > v) {
 return binary_search(a, l, r - 1, v);
 } else {
 return binary_search(a, l + 1, r, v);
 }
}

(1)
(2)

!
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Possible paths
1→2→3→4→5
1→2→3→4→6→7

✔

✔

How much code coverage?

No clear cut answer..

–Robert Martin (Uncle Bob) , quoted from Deciphering Ruby Code Metrics 
http://blog.codeclimate.com/blog/2013/08/07/deciphering-ruby-code-metrics/

“100% test coverage is a natural 
side effect of proper development

practices, and therefore a bare minimum
indicator of quality.”

–David Heinemeier Hansson (creator of Ruby on Rails), Testing like the TSA.  
http://37signals.com/svn/posts/3159-testing-like-the-tsa

“Seven don’ts of testing:  
1. Don’t aim for 100% coverage.”

–http://c2.com/cgi/wiki?CodeCoverage

“[The pointy-haired boss] didn't know
how to read the report, just that one

number. They had no clue about getters/
setters and why they weren't tested. […]
Don't bother with CodeCoverage, it's not

worth your time. ”

Let’s ask StackOverflow

womp
67.3k 13 137 191

Chris
7,805 14 75 125

13 Answers

Robert Harvey ♦
95.5k 16 146 258

romaintaz
28.2k 13 103 170

Robert Harvey ♦
95.5k 16 146 258

Do your unit tests constitute 100% code coverage? Yes or no, and why or why not.

unit-testing code-coverage

edited Sep 25 '09 at 5:29 asked Sep 25 '09 at 5:01

4

Can't say I've ever booked a flight to really test my code.. :-P – Nick Bedford Sep 25 '09 at 5:28

2

You should check this question out: stackoverflow.com/questions/90002/… – Jon Limjap Sep 25 '09 at 5:37

add comment

start a bounty

protected by Kev Oct 29 '12 at 13:44
This question is protected to prevent "thanks!", "me too!", or spam answers by new users. To answer it, you must

have earned at least 10 reputation on this site.

No for several reasons :

It is really expensive to reach the 100% coverage, compared to the 90% or 95% for a benefit that is not
obvious.
Even with 100% of coverage, your code is not perfect. Take a look at this method (in fact it depends on
which type of coverage you are talking about - branch coverage, line coverage...):

public static String foo(boolean someCondition) {
 String bar = null;
 if (someCondition) {
 bar = "blabla";
 }
 return bar.trim();
}

and the unit test:

assertEquals("blabla", foo(true));

The test will succeed, and your code coverage is 100%. However, if you add another test:

assertEquals("blabla", foo(false));

then you will get a NullPointerException . And as you were at 100% with the first test, you would have
not necessarily write the second one!

Generally, I consider that the critical code must be covered at almost 100%, while the other code can be
covered at 85-90%

edited Jul 11 '10 at 16:53 answered Sep 25 '09 at 5:18

3

+1 for for stating that 100% code coverage does not imply a perfect test suite. You'd need 100% path
coverage, which is exceedingly difficult (and impossible in many cases.) – Falaina Sep 25 '09 at 5:34

1

You are talking about Function Coverage, a measure of whether all functions in the program are called during
testing. I would expect this metric to be 100% in all cases; how could you trust a test suite that didn't call all of

the functions in your code at least once? – Robert Harvey ♦ Sep 25 '09 at 6:31

4

I'm not talking about function coverage here! In my example, the first unit test gives a 100% of line coverage
not function coverage. However, as stated by Falaina, the path coverage is not 100% here (which is
extremely hard to get), and that's why the second test will fail, even if I already get a 100% line coverage with
the first test... – romaintaz Sep 25 '09 at 6:51

I see what you are saying. – Robert Harvey ♦ Sep 25 '09 at 7:29

add comment

It is seldom practical to get 100% code coverage in a non-trivial system. Most developers who write unit tests
shoot for the mid to high 90's.

An automated testing tool like Pex can help increase code coverage. It works by searching for hard-to-find
edge cases.

answered Sep 25 '09 at 5:03

Unit testing code coverage - do you have 100% coverage?

2 +70

4,248 1 10 21

review help

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

1 of 4 1/31/14, 10:15 AM

–http://stackoverflow.com/q/1475520

womp
67.3k 13 137 191

Chris
7,805 14 75 125

13 Answers

Robert Harvey ♦
95.5k 16 146 258

romaintaz
28.2k 13 103 170

Robert Harvey ♦
95.5k 16 146 258

Do your unit tests constitute 100% code coverage? Yes or no, and why or why not.

unit-testing code-coverage

edited Sep 25 '09 at 5:29 asked Sep 25 '09 at 5:01

4

Can't say I've ever booked a flight to really test my code.. :-P – Nick Bedford Sep 25 '09 at 5:28

2

You should check this question out: stackoverflow.com/questions/90002/… – Jon Limjap Sep 25 '09 at 5:37

add comment

start a bounty

protected by Kev Oct 29 '12 at 13:44
This question is protected to prevent "thanks!", "me too!", or spam answers by new users. To answer it, you must

have earned at least 10 reputation on this site.

No for several reasons :

It is really expensive to reach the 100% coverage, compared to the 90% or 95% for a benefit that is not
obvious.
Even with 100% of coverage, your code is not perfect. Take a look at this method (in fact it depends on
which type of coverage you are talking about - branch coverage, line coverage...):

public static String foo(boolean someCondition) {
 String bar = null;
 if (someCondition) {
 bar = "blabla";
 }
 return bar.trim();
}

and the unit test:

assertEquals("blabla", foo(true));

The test will succeed, and your code coverage is 100%. However, if you add another test:

assertEquals("blabla", foo(false));

then you will get a NullPointerException . And as you were at 100% with the first test, you would have
not necessarily write the second one!

Generally, I consider that the critical code must be covered at almost 100%, while the other code can be
covered at 85-90%

edited Jul 11 '10 at 16:53 answered Sep 25 '09 at 5:18

3

+1 for for stating that 100% code coverage does not imply a perfect test suite. You'd need 100% path
coverage, which is exceedingly difficult (and impossible in many cases.) – Falaina Sep 25 '09 at 5:34

1

You are talking about Function Coverage, a measure of whether all functions in the program are called during
testing. I would expect this metric to be 100% in all cases; how could you trust a test suite that didn't call all of

the functions in your code at least once? – Robert Harvey ♦ Sep 25 '09 at 6:31

4

I'm not talking about function coverage here! In my example, the first unit test gives a 100% of line coverage
not function coverage. However, as stated by Falaina, the path coverage is not 100% here (which is
extremely hard to get), and that's why the second test will fail, even if I already get a 100% line coverage with
the first test... – romaintaz Sep 25 '09 at 6:51

I see what you are saying. – Robert Harvey ♦ Sep 25 '09 at 7:29

add comment

It is seldom practical to get 100% code coverage in a non-trivial system. Most developers who write unit tests
shoot for the mid to high 90's.

An automated testing tool like Pex can help increase code coverage. It works by searching for hard-to-find
edge cases.

answered Sep 25 '09 at 5:03

Unit testing code coverage - do you have 100% coverage?

2 +70

4,248 1 10 21

review help

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

1 of 4 1/31/14, 10:15 AM

womp
67.3k 13 137 191

Chris
7,805 14 75 125

13 Answers

Robert Harvey ♦
95.5k 16 146 258

romaintaz
28.2k 13 103 170

Robert Harvey ♦
95.5k 16 146 258

Do your unit tests constitute 100% code coverage? Yes or no, and why or why not.

unit-testing code-coverage

edited Sep 25 '09 at 5:29 asked Sep 25 '09 at 5:01

4

Can't say I've ever booked a flight to really test my code.. :-P – Nick Bedford Sep 25 '09 at 5:28

2

You should check this question out: stackoverflow.com/questions/90002/… – Jon Limjap Sep 25 '09 at 5:37

add comment

start a bounty

protected by Kev Oct 29 '12 at 13:44
This question is protected to prevent "thanks!", "me too!", or spam answers by new users. To answer it, you must

have earned at least 10 reputation on this site.

No for several reasons :

It is really expensive to reach the 100% coverage, compared to the 90% or 95% for a benefit that is not
obvious.
Even with 100% of coverage, your code is not perfect. Take a look at this method (in fact it depends on
which type of coverage you are talking about - branch coverage, line coverage...):

public static String foo(boolean someCondition) {
 String bar = null;
 if (someCondition) {
 bar = "blabla";
 }
 return bar.trim();
}

and the unit test:

assertEquals("blabla", foo(true));

The test will succeed, and your code coverage is 100%. However, if you add another test:

assertEquals("blabla", foo(false));

then you will get a NullPointerException . And as you were at 100% with the first test, you would have
not necessarily write the second one!

Generally, I consider that the critical code must be covered at almost 100%, while the other code can be
covered at 85-90%

edited Jul 11 '10 at 16:53 answered Sep 25 '09 at 5:18

3

+1 for for stating that 100% code coverage does not imply a perfect test suite. You'd need 100% path
coverage, which is exceedingly difficult (and impossible in many cases.) – Falaina Sep 25 '09 at 5:34

1

You are talking about Function Coverage, a measure of whether all functions in the program are called during
testing. I would expect this metric to be 100% in all cases; how could you trust a test suite that didn't call all of

the functions in your code at least once? – Robert Harvey ♦ Sep 25 '09 at 6:31

4

I'm not talking about function coverage here! In my example, the first unit test gives a 100% of line coverage
not function coverage. However, as stated by Falaina, the path coverage is not 100% here (which is
extremely hard to get), and that's why the second test will fail, even if I already get a 100% line coverage with
the first test... – romaintaz Sep 25 '09 at 6:51

I see what you are saying. – Robert Harvey ♦ Sep 25 '09 at 7:29

add comment

It is seldom practical to get 100% code coverage in a non-trivial system. Most developers who write unit tests
shoot for the mid to high 90's.

An automated testing tool like Pex can help increase code coverage. It works by searching for hard-to-find
edge cases.

answered Sep 25 '09 at 5:03

Unit testing code coverage - do you have 100% coverage?

2 +70

4,248 1 10 21

review help

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

1 of 4 1/31/14, 10:15 AM

Benjol
14.8k 7 78 156

Andrew Hare
146k 22 343 451

Mike Dunlavey
24k 7 44 72

RichH
4,174 1 18 50

+1 Well said :) – Andrew Hare Sep 25 '09 at 5:05

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of the
bug! This is the conclusion I got empirically after many years of TDD. – Patrick from NDepend team Feb 20
'11 at 10:11

add comment

No, because there is a practical trade-off between perfect unit tests and actually finishing a project :)

edited Sep 25 '09 at 5:23 answered Sep 25 '09 at 5:03

add comment

What I do when I get the chance is to insert statements on every branch of the code that can be grepped for
and that record if they've been hit, so that I can do some sort of comparison to see which statements have
not been hit. This is a bit of a chore, so I'm not always good about it.

I just built a small UI app to use in charity auctions, that uses MySQL as its DB. Since I really, really didn't
want it to break in the middle of an auction, I tried something new.

Since it was in VC6 (C++ + MFC) I defined two macros:

#define TCOV ASSERT(FALSE)
#define _COV ASSERT(TRUE)

and then I sprinkled

TCOV;

throughout the code, on every separate path I could find, and in every routine. Then I ran the program under
the debugger, and every time it hit a TCOV , it would halt. I would look at the code for any obvious problems,
and then edit it to _COV , then continue. The code would recompile on the fly and move on to the next
TCOV . In this way, I slowly, laboriously, eliminated enough TCOV statements so it would run "normally".

After a while, I grepped the code for TCOV , and that showed what code I had not tested. Then I went back
and ran it again, making sure to test more branches I had not tried earlier. I kept doing this until there were
no TCOV statements left in the code.

This took a few hours, but in the process I found and fixed several bugs. There is no way I could have had
the discipline to make and follow a test plan that would have been that thorough. Not only did I know I had
covered all branches, but it had made me look at every branch while it was running - a very good kind of
code review.

So, whether or not you use a coverage tool, this is a good way to root out bugs that would otherwise lurk in
the code until a more embarrasing time.

edited Oct 10 '09 at 23:07 answered Oct 10 '09 at 22:59

Is this something you came up with? Seems like the technique could do with a name. – funroll Oct 16 '13 at
19:38

@funroll: Name? I just think of it as coverage testing. Got any ideas? – Mike Dunlavey Oct 17 '13 at 20:35

add comment

No because I spent my time adding new features that help the users rather than tricky to write obscure tests
that deliver little value. I say unit test the big things, subtle things and things that are fragile.

answered Sep 25 '09 at 5:06

add comment

I personally find 100% test coverage to be problematic on multiple levels. First and foremost, you have to
make sure you are gaining a tangible, cost-saving benefit from the unit tests you write. In addition, unit tests,
like any other code, are CODE. That means it, just like any other code, must be verified for correctness and
maintained. That additional time verifying additional code for correctness, and maintaining it and keeping
those tests valid in response to changes to business code, adds cost. Achieving 100% test coverage and
ensuring you test you're code as thoroughly as possible is a laudable endeavor, but achieving it at any
cost...well, is often too costly.

There are many times when covering error and validity checks that are in place to cover fringe or extremely
rare, but definitely possible, exceptional cases are an example of code that does not necessarily need to be
covered. The amount of time, effort (and ultimately money) that must be invested to achieve coverage of
such rare fringe cases is often wasteful in light of other business needs. Properties are often a part of code
that, especially with C# 3.0, do not need to be tested as most, if not all, properties behave exactly the same
way, and are excessively simple (single-statement return or set.) Investing tremendous amounts of time
wrapping unit tests around thousands of properties could quite likely be better invested somewhere else
where a greater, more valuable tangible return on that investment can be realized.

Beyond simply achieving 100% test coverage, there are similar problems with trying to set up the "perfect"
unit. Mocking frameworks have progressed to an amazing degree these days, and almost anything can be
mocked (if you are willing to pay money, TypeMock can actually mock anything and everything, but it does
cost a lot.) However, there are often times when dependencies of your code were not written in a mock-able
way (this is actually a core problem with the vast bulk of the .NET framework itself.) Investing time to achieve
the proper scope of a test is useful, but putting in excessive amounts of time to mock away everything and
anything under the face of the sun, adding layers of abstraction and interfaces to make it possible, is again
most often a waste of time, effort, and ultimately money.

The ultimate goal with testing shouldn't really be to achieve the ultimate in code coverage. The ultimate goal

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

2 of 4 1/31/14, 10:15 AM

jrista
19.9k 1 38 87

madlep
12.4k 5 27 46

SqlRyan
13.7k 16 72 138

Patrick from NDepend team
6,388 25 32

should be achieving the greatest value per unit time invested in writing unit tests, while covering as much as
possible in that time. The best way to achieve this is to take the BDD approach: Specify your concerns,
define your context, and verify the expected outcomes occur for any piece of behavior being developed
(behavior...not unit.)

answered Sep 25 '09 at 5:25

add comment

Yes we do.

It depends on what language and framework you're using as to how easy that is to achieve though.

We're using Ruby on Rails for my current project. Ruby is very "mockable" in that you can stub/mock out
large chunks of your code without having to build in overly complicated class composition and construction
designs that you would have to do in other languages.

That said, we only have 100% line coverage (basically what rcov gives you). You still have to think about
testing all the required branches.

This is only really possible if you include it from the start as part of your continuous integration build, and
break the build if coverage drops below 100% - prompting developers to immediately fix it. Of course you
could choose some other number as a target, but if you're starting fresh, there isn't much difference for the
effort to get from 90% to 100%

We've also got a bunch of other metrics that break the build if they cross a given threshold as well
(cyclomatic complexity, duplication for example) these all go together and help reinforce each other.

Again, you really have to have this stuff in place from the start to keep working at a strict level - either that or
set some target you can hit, and gradually ratchet it up till you get to a level you're happy with.

Does doing this add value? I was skeptical at first, but I can honestly say that yes it does. Not primarily
because you have thoroughly tested code (although that is definitely a benefit), but more in terms of writing
simple code that is easy to test and reason about. If you know you have to have 100% test coverage, you
stop writing overly complex if/else/while/try/catch monstrosities and Keep It Simple Stupid.

answered Sep 25 '09 at 5:53

"If you know you have to have 100% test coverage, you stop writing overly complex if/else/while/try/catch
monstrosities" -- Very interesting point. – funroll Oct 16 '13 at 19:17

add comment

I generally write unit tests just as a regression-prevention method. When a bug is reported that I have to fix, I
create a unit test to ensure that it doesn't re-surface in the future. I may create a few tests for sections of
functionality I have to make sure stay intact (or for complex inter-part interactions), but I usually want for the
bug fix to tell me one is necessary.

answered Sep 25 '09 at 5:36

add comment

To all the 90% coverage tester:

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of
the bug! This is the conclusion I got empirically after many years of TDD.

And after all this is pretty straightforward conclusion. This 10% hard to test code, is hard to test because it
reflect tricky business problem or tricky design flaw or both. These exact reasons that often leads to buggy
code.

But also:

100% covered code that decreases with time to less than 100% covered often pinpoints a bug or at
least a flaw.
100% covered code used in conjunction with contracts, is the ultimate weapon to lead to live close to
bug-free code. Code Contracts and Automated Testing are pretty much the same thing
When a bug is discovered in 100% covered code, it is easier to fix. Since the code responsible for the
bug is already covered by tests, it shouldn't be hard to write new tests to cover the bug fix.

answered Feb 20 '11 at 10:19

add comment

I usually manage to hit 93..100% with my coverage but I don't aim for 100% anymore. I used to do that and
while it's doable, it's not worth the effort beyond a certain point because testing blindly obvious usually isn't
needed. Good example of this could be the true evaluation branch of the following code snipped

public void method(boolean someBoolean) {
 if (someBoolean) {
 return;
 } else {
 /* do lots of stuff */
 }
}

However what's important to achieve is to as close to 100% coverage on functional parts of the class as
possible since those are the dangerous waters of your application, the misty bog of creeping bugs and
undefined behaviour and of course the money-making flea circus.

answered Oct 1 '09 at 7:55

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

3 of 4 1/31/14, 10:15 AM

jrista
19.9k 1 38 87

madlep
12.4k 5 27 46

SqlRyan
13.7k 16 72 138

Patrick from NDepend team
6,388 25 32

should be achieving the greatest value per unit time invested in writing unit tests, while covering as much as
possible in that time. The best way to achieve this is to take the BDD approach: Specify your concerns,
define your context, and verify the expected outcomes occur for any piece of behavior being developed
(behavior...not unit.)

answered Sep 25 '09 at 5:25

add comment

Yes we do.

It depends on what language and framework you're using as to how easy that is to achieve though.

We're using Ruby on Rails for my current project. Ruby is very "mockable" in that you can stub/mock out
large chunks of your code without having to build in overly complicated class composition and construction
designs that you would have to do in other languages.

That said, we only have 100% line coverage (basically what rcov gives you). You still have to think about
testing all the required branches.

This is only really possible if you include it from the start as part of your continuous integration build, and
break the build if coverage drops below 100% - prompting developers to immediately fix it. Of course you
could choose some other number as a target, but if you're starting fresh, there isn't much difference for the
effort to get from 90% to 100%

We've also got a bunch of other metrics that break the build if they cross a given threshold as well
(cyclomatic complexity, duplication for example) these all go together and help reinforce each other.

Again, you really have to have this stuff in place from the start to keep working at a strict level - either that or
set some target you can hit, and gradually ratchet it up till you get to a level you're happy with.

Does doing this add value? I was skeptical at first, but I can honestly say that yes it does. Not primarily
because you have thoroughly tested code (although that is definitely a benefit), but more in terms of writing
simple code that is easy to test and reason about. If you know you have to have 100% test coverage, you
stop writing overly complex if/else/while/try/catch monstrosities and Keep It Simple Stupid.

answered Sep 25 '09 at 5:53

"If you know you have to have 100% test coverage, you stop writing overly complex if/else/while/try/catch
monstrosities" -- Very interesting point. – funroll Oct 16 '13 at 19:17

add comment

I generally write unit tests just as a regression-prevention method. When a bug is reported that I have to fix, I
create a unit test to ensure that it doesn't re-surface in the future. I may create a few tests for sections of
functionality I have to make sure stay intact (or for complex inter-part interactions), but I usually want for the
bug fix to tell me one is necessary.

answered Sep 25 '09 at 5:36

add comment

To all the 90% coverage tester:

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of
the bug! This is the conclusion I got empirically after many years of TDD.

And after all this is pretty straightforward conclusion. This 10% hard to test code, is hard to test because it
reflect tricky business problem or tricky design flaw or both. These exact reasons that often leads to buggy
code.

But also:

100% covered code that decreases with time to less than 100% covered often pinpoints a bug or at
least a flaw.
100% covered code used in conjunction with contracts, is the ultimate weapon to lead to live close to
bug-free code. Code Contracts and Automated Testing are pretty much the same thing
When a bug is discovered in 100% covered code, it is easier to fix. Since the code responsible for the
bug is already covered by tests, it shouldn't be hard to write new tests to cover the bug fix.

answered Feb 20 '11 at 10:19

add comment

I usually manage to hit 93..100% with my coverage but I don't aim for 100% anymore. I used to do that and
while it's doable, it's not worth the effort beyond a certain point because testing blindly obvious usually isn't
needed. Good example of this could be the true evaluation branch of the following code snipped

public void method(boolean someBoolean) {
 if (someBoolean) {
 return;
 } else {
 /* do lots of stuff */
 }
}

However what's important to achieve is to as close to 100% coverage on functional parts of the class as
possible since those are the dangerous waters of your application, the misty bog of creeping bugs and
undefined behaviour and of course the money-making flea circus.

answered Oct 1 '09 at 7:55

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

3 of 4 1/31/14, 10:15 AM

jrista
19.9k 1 38 87

madlep
12.4k 5 27 46

SqlRyan
13.7k 16 72 138

Patrick from NDepend team
6,388 25 32

should be achieving the greatest value per unit time invested in writing unit tests, while covering as much as
possible in that time. The best way to achieve this is to take the BDD approach: Specify your concerns,
define your context, and verify the expected outcomes occur for any piece of behavior being developed
(behavior...not unit.)

answered Sep 25 '09 at 5:25

add comment

Yes we do.

It depends on what language and framework you're using as to how easy that is to achieve though.

We're using Ruby on Rails for my current project. Ruby is very "mockable" in that you can stub/mock out
large chunks of your code without having to build in overly complicated class composition and construction
designs that you would have to do in other languages.

That said, we only have 100% line coverage (basically what rcov gives you). You still have to think about
testing all the required branches.

This is only really possible if you include it from the start as part of your continuous integration build, and
break the build if coverage drops below 100% - prompting developers to immediately fix it. Of course you
could choose some other number as a target, but if you're starting fresh, there isn't much difference for the
effort to get from 90% to 100%

We've also got a bunch of other metrics that break the build if they cross a given threshold as well
(cyclomatic complexity, duplication for example) these all go together and help reinforce each other.

Again, you really have to have this stuff in place from the start to keep working at a strict level - either that or
set some target you can hit, and gradually ratchet it up till you get to a level you're happy with.

Does doing this add value? I was skeptical at first, but I can honestly say that yes it does. Not primarily
because you have thoroughly tested code (although that is definitely a benefit), but more in terms of writing
simple code that is easy to test and reason about. If you know you have to have 100% test coverage, you
stop writing overly complex if/else/while/try/catch monstrosities and Keep It Simple Stupid.

answered Sep 25 '09 at 5:53

"If you know you have to have 100% test coverage, you stop writing overly complex if/else/while/try/catch
monstrosities" -- Very interesting point. – funroll Oct 16 '13 at 19:17

add comment

I generally write unit tests just as a regression-prevention method. When a bug is reported that I have to fix, I
create a unit test to ensure that it doesn't re-surface in the future. I may create a few tests for sections of
functionality I have to make sure stay intact (or for complex inter-part interactions), but I usually want for the
bug fix to tell me one is necessary.

answered Sep 25 '09 at 5:36

add comment

To all the 90% coverage tester:

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of
the bug! This is the conclusion I got empirically after many years of TDD.

And after all this is pretty straightforward conclusion. This 10% hard to test code, is hard to test because it
reflect tricky business problem or tricky design flaw or both. These exact reasons that often leads to buggy
code.

But also:

100% covered code that decreases with time to less than 100% covered often pinpoints a bug or at
least a flaw.
100% covered code used in conjunction with contracts, is the ultimate weapon to lead to live close to
bug-free code. Code Contracts and Automated Testing are pretty much the same thing
When a bug is discovered in 100% covered code, it is easier to fix. Since the code responsible for the
bug is already covered by tests, it shouldn't be hard to write new tests to cover the bug fix.

answered Feb 20 '11 at 10:19

add comment

I usually manage to hit 93..100% with my coverage but I don't aim for 100% anymore. I used to do that and
while it's doable, it's not worth the effort beyond a certain point because testing blindly obvious usually isn't
needed. Good example of this could be the true evaluation branch of the following code snipped

public void method(boolean someBoolean) {
 if (someBoolean) {
 return;
 } else {
 /* do lots of stuff */
 }
}

However what's important to achieve is to as close to 100% coverage on functional parts of the class as
possible since those are the dangerous waters of your application, the misty bog of creeping bugs and
undefined behaviour and of course the money-making flea circus.

answered Oct 1 '09 at 7:55

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

3 of 4 1/31/14, 10:15 AM

jrista
19.9k 1 38 87

madlep
12.4k 5 27 46

SqlRyan
13.7k 16 72 138

Patrick from NDepend team
6,388 25 32

should be achieving the greatest value per unit time invested in writing unit tests, while covering as much as
possible in that time. The best way to achieve this is to take the BDD approach: Specify your concerns,
define your context, and verify the expected outcomes occur for any piece of behavior being developed
(behavior...not unit.)

answered Sep 25 '09 at 5:25

add comment

Yes we do.

It depends on what language and framework you're using as to how easy that is to achieve though.

We're using Ruby on Rails for my current project. Ruby is very "mockable" in that you can stub/mock out
large chunks of your code without having to build in overly complicated class composition and construction
designs that you would have to do in other languages.

That said, we only have 100% line coverage (basically what rcov gives you). You still have to think about
testing all the required branches.

This is only really possible if you include it from the start as part of your continuous integration build, and
break the build if coverage drops below 100% - prompting developers to immediately fix it. Of course you
could choose some other number as a target, but if you're starting fresh, there isn't much difference for the
effort to get from 90% to 100%

We've also got a bunch of other metrics that break the build if they cross a given threshold as well
(cyclomatic complexity, duplication for example) these all go together and help reinforce each other.

Again, you really have to have this stuff in place from the start to keep working at a strict level - either that or
set some target you can hit, and gradually ratchet it up till you get to a level you're happy with.

Does doing this add value? I was skeptical at first, but I can honestly say that yes it does. Not primarily
because you have thoroughly tested code (although that is definitely a benefit), but more in terms of writing
simple code that is easy to test and reason about. If you know you have to have 100% test coverage, you
stop writing overly complex if/else/while/try/catch monstrosities and Keep It Simple Stupid.

answered Sep 25 '09 at 5:53

"If you know you have to have 100% test coverage, you stop writing overly complex if/else/while/try/catch
monstrosities" -- Very interesting point. – funroll Oct 16 '13 at 19:17

add comment

I generally write unit tests just as a regression-prevention method. When a bug is reported that I have to fix, I
create a unit test to ensure that it doesn't re-surface in the future. I may create a few tests for sections of
functionality I have to make sure stay intact (or for complex inter-part interactions), but I usually want for the
bug fix to tell me one is necessary.

answered Sep 25 '09 at 5:36

add comment

To all the 90% coverage tester:

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of
the bug! This is the conclusion I got empirically after many years of TDD.

And after all this is pretty straightforward conclusion. This 10% hard to test code, is hard to test because it
reflect tricky business problem or tricky design flaw or both. These exact reasons that often leads to buggy
code.

But also:

100% covered code that decreases with time to less than 100% covered often pinpoints a bug or at
least a flaw.
100% covered code used in conjunction with contracts, is the ultimate weapon to lead to live close to
bug-free code. Code Contracts and Automated Testing are pretty much the same thing
When a bug is discovered in 100% covered code, it is easier to fix. Since the code responsible for the
bug is already covered by tests, it shouldn't be hard to write new tests to cover the bug fix.

answered Feb 20 '11 at 10:19

add comment

I usually manage to hit 93..100% with my coverage but I don't aim for 100% anymore. I used to do that and
while it's doable, it's not worth the effort beyond a certain point because testing blindly obvious usually isn't
needed. Good example of this could be the true evaluation branch of the following code snipped

public void method(boolean someBoolean) {
 if (someBoolean) {
 return;
 } else {
 /* do lots of stuff */
 }
}

However what's important to achieve is to as close to 100% coverage on functional parts of the class as
possible since those are the dangerous waters of your application, the misty bog of creeping bugs and
undefined behaviour and of course the money-making flea circus.

answered Oct 1 '09 at 7:55

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

3 of 4 1/31/14, 10:15 AM

“If you know you have to have 100% test coverage,
you stop writing overly complex if/else/while/try/
catch monstrosities and Keep It Simple Stupid.”

jrista
19.9k 1 38 87

madlep
12.4k 5 27 46

SqlRyan
13.7k 16 72 138

Patrick from NDepend team
6,388 25 32

should be achieving the greatest value per unit time invested in writing unit tests, while covering as much as
possible in that time. The best way to achieve this is to take the BDD approach: Specify your concerns,
define your context, and verify the expected outcomes occur for any piece of behavior being developed
(behavior...not unit.)

answered Sep 25 '09 at 5:25

add comment

Yes we do.

It depends on what language and framework you're using as to how easy that is to achieve though.

We're using Ruby on Rails for my current project. Ruby is very "mockable" in that you can stub/mock out
large chunks of your code without having to build in overly complicated class composition and construction
designs that you would have to do in other languages.

That said, we only have 100% line coverage (basically what rcov gives you). You still have to think about
testing all the required branches.

This is only really possible if you include it from the start as part of your continuous integration build, and
break the build if coverage drops below 100% - prompting developers to immediately fix it. Of course you
could choose some other number as a target, but if you're starting fresh, there isn't much difference for the
effort to get from 90% to 100%

We've also got a bunch of other metrics that break the build if they cross a given threshold as well
(cyclomatic complexity, duplication for example) these all go together and help reinforce each other.

Again, you really have to have this stuff in place from the start to keep working at a strict level - either that or
set some target you can hit, and gradually ratchet it up till you get to a level you're happy with.

Does doing this add value? I was skeptical at first, but I can honestly say that yes it does. Not primarily
because you have thoroughly tested code (although that is definitely a benefit), but more in terms of writing
simple code that is easy to test and reason about. If you know you have to have 100% test coverage, you
stop writing overly complex if/else/while/try/catch monstrosities and Keep It Simple Stupid.

answered Sep 25 '09 at 5:53

"If you know you have to have 100% test coverage, you stop writing overly complex if/else/while/try/catch
monstrosities" -- Very interesting point. – funroll Oct 16 '13 at 19:17

add comment

I generally write unit tests just as a regression-prevention method. When a bug is reported that I have to fix, I
create a unit test to ensure that it doesn't re-surface in the future. I may create a few tests for sections of
functionality I have to make sure stay intact (or for complex inter-part interactions), but I usually want for the
bug fix to tell me one is necessary.

answered Sep 25 '09 at 5:36

add comment

To all the 90% coverage tester:

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of
the bug! This is the conclusion I got empirically after many years of TDD.

And after all this is pretty straightforward conclusion. This 10% hard to test code, is hard to test because it
reflect tricky business problem or tricky design flaw or both. These exact reasons that often leads to buggy
code.

But also:

100% covered code that decreases with time to less than 100% covered often pinpoints a bug or at
least a flaw.
100% covered code used in conjunction with contracts, is the ultimate weapon to lead to live close to
bug-free code. Code Contracts and Automated Testing are pretty much the same thing
When a bug is discovered in 100% covered code, it is easier to fix. Since the code responsible for the
bug is already covered by tests, it shouldn't be hard to write new tests to cover the bug fix.

answered Feb 20 '11 at 10:19

add comment

I usually manage to hit 93..100% with my coverage but I don't aim for 100% anymore. I used to do that and
while it's doable, it's not worth the effort beyond a certain point because testing blindly obvious usually isn't
needed. Good example of this could be the true evaluation branch of the following code snipped

public void method(boolean someBoolean) {
 if (someBoolean) {
 return;
 } else {
 /* do lots of stuff */
 }
}

However what's important to achieve is to as close to 100% coverage on functional parts of the class as
possible since those are the dangerous waters of your application, the misty bog of creeping bugs and
undefined behaviour and of course the money-making flea circus.

answered Oct 1 '09 at 7:55

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

3 of 4 1/31/14, 10:15 AM

jrista
19.9k 1 38 87

madlep
12.4k 5 27 46

SqlRyan
13.7k 16 72 138

Patrick from NDepend team
6,388 25 32

should be achieving the greatest value per unit time invested in writing unit tests, while covering as much as
possible in that time. The best way to achieve this is to take the BDD approach: Specify your concerns,
define your context, and verify the expected outcomes occur for any piece of behavior being developed
(behavior...not unit.)

answered Sep 25 '09 at 5:25

add comment

Yes we do.

It depends on what language and framework you're using as to how easy that is to achieve though.

We're using Ruby on Rails for my current project. Ruby is very "mockable" in that you can stub/mock out
large chunks of your code without having to build in overly complicated class composition and construction
designs that you would have to do in other languages.

That said, we only have 100% line coverage (basically what rcov gives you). You still have to think about
testing all the required branches.

This is only really possible if you include it from the start as part of your continuous integration build, and
break the build if coverage drops below 100% - prompting developers to immediately fix it. Of course you
could choose some other number as a target, but if you're starting fresh, there isn't much difference for the
effort to get from 90% to 100%

We've also got a bunch of other metrics that break the build if they cross a given threshold as well
(cyclomatic complexity, duplication for example) these all go together and help reinforce each other.

Again, you really have to have this stuff in place from the start to keep working at a strict level - either that or
set some target you can hit, and gradually ratchet it up till you get to a level you're happy with.

Does doing this add value? I was skeptical at first, but I can honestly say that yes it does. Not primarily
because you have thoroughly tested code (although that is definitely a benefit), but more in terms of writing
simple code that is easy to test and reason about. If you know you have to have 100% test coverage, you
stop writing overly complex if/else/while/try/catch monstrosities and Keep It Simple Stupid.

answered Sep 25 '09 at 5:53

"If you know you have to have 100% test coverage, you stop writing overly complex if/else/while/try/catch
monstrosities" -- Very interesting point. – funroll Oct 16 '13 at 19:17

add comment

I generally write unit tests just as a regression-prevention method. When a bug is reported that I have to fix, I
create a unit test to ensure that it doesn't re-surface in the future. I may create a few tests for sections of
functionality I have to make sure stay intact (or for complex inter-part interactions), but I usually want for the
bug fix to tell me one is necessary.

answered Sep 25 '09 at 5:36

add comment

To all the 90% coverage tester:

The problem with doing so is that the 10% hard to test code is also the not-trivial code that contains 90% of
the bug! This is the conclusion I got empirically after many years of TDD.

And after all this is pretty straightforward conclusion. This 10% hard to test code, is hard to test because it
reflect tricky business problem or tricky design flaw or both. These exact reasons that often leads to buggy
code.

But also:

100% covered code that decreases with time to less than 100% covered often pinpoints a bug or at
least a flaw.
100% covered code used in conjunction with contracts, is the ultimate weapon to lead to live close to
bug-free code. Code Contracts and Automated Testing are pretty much the same thing
When a bug is discovered in 100% covered code, it is easier to fix. Since the code responsible for the
bug is already covered by tests, it shouldn't be hard to write new tests to cover the bug fix.

answered Feb 20 '11 at 10:19

add comment

I usually manage to hit 93..100% with my coverage but I don't aim for 100% anymore. I used to do that and
while it's doable, it's not worth the effort beyond a certain point because testing blindly obvious usually isn't
needed. Good example of this could be the true evaluation branch of the following code snipped

public void method(boolean someBoolean) {
 if (someBoolean) {
 return;
 } else {
 /* do lots of stuff */
 }
}

However what's important to achieve is to as close to 100% coverage on functional parts of the class as
possible since those are the dangerous waters of your application, the misty bog of creeping bugs and
undefined behaviour and of course the money-making flea circus.

answered Oct 1 '09 at 7:55

Unit testing code coverage - do you have 100% coverage? - Stack Overflow http://stackoverflow.com/questions/1475520/unit-testing-code-coverage-do-you-have-100-coverage

3 of 4 1/31/14, 10:15 AM

Quinn Taylor
27k 6 77 101

sanity
10.8k 13 67 134

25 Answers

If you were to mandate a minimum percentage code-coverage for unit tests, perhaps even as a requirement
for committing to a repository, what would it be?

Please explain how you arrived at your answer (since if all you did was pick a number, then I could have
done that all by myself ;)

unit-testing code-coverage

edited Jun 26 '09 at 6:49 asked Sep 18 '08 at 4:25

add comment

start a bounty

This prose by Alberto Savoia answers precisely that question (in a nicely entertaining manner at that!):

http://www.artima.com/forums/flat.jsp?forum=106&thread=204677

What is a reasonable code coverage % for unit tests (and why)?

2 +70

4,248 1 10 21

review help

What is a reasonable code coverage % for unit tests (and why)? - Stack Overflow http://stackoverflow.com/questions/90002/what-is-a-reasonable-code-coverage-for-unit-tests-and-why/90021

1 of 7 1/31/14, 11:16 AM

–http://stackoverflow.com/q/90002

–Alberto Savoia, Testivus On Test Coverage.
http://stackoverflow.com/a/90021/559913

The great master pointed at a pot of
boiling water and said: “How many

grains of rice should I put in that pot?”

Demonstration

Cyclomatic Complexity

… measures the “complexity”

More complexity

More complexity

Harder to maintain

More complexity

Harder to maintain
test

debug
change

understand

Code Coverage
need to run code

Cyclomatic Complexity
no need to run code
(called “static analysis”)

… measures number of
“linearly independent paths”

through a program’s
source code

How to use the number?

–Thomas J. McCabe (developer of cyclomatic complexity), 1976.
"A Complexity Measure,” Quoted from Wikipedia 

https://en.wikipedia.org/wiki/Cyclomatic_complexity

“[P]rogrammers should count the complexity of the
modules they are developing, and split them into

smaller modules whenever the cyclomatic

complexity of the module exceeded 10”

10?

–McCabe, Watson, 1996. “Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric,” Quoted from Wikipedia 
https://en.wikipedia.org/wiki/Cyclomatic_complexity

“For each module, either limit cyclomatic

complexity to [the agreed-upon limit] 
or provide a written explanation of why  

the limit was exceeded.”

Demonstration

How to Calculate?

Code

Control Flow Graph

Sequential Flow

Branch Merge

If-Else Clause
function insertion_procedure(int b, int c) {
 if (a == 111) {
 if (b > c) {
 a = b;
 } else {
 a = c;
 }
 }
 Console.WriteLine(a);
}

(1)
(2)
(3)
!
(4)
!
!
(5)

If-Else Clause
function insertion_procedure(int b, int c) {
 if (a == 111) {
 if (b > c) {
 a = b;
 } else {
 a = c;
 }
 }
 Console.WriteLine(a);
}

(1)
(2)
(3)
!
(4)
!
!
(5)

2

1

3 4

5

If-Else Clause

2

1

3 4

5

6 edges

5 nodes

1 connected component

Calculation

M = E − N + 2P

Calculation

M = E − N + 2P

The Cyclomatic Complexity

Number of Edges Nodes
Connected
Components

If-Else Clause
insertion_procedure(int b, int c) {
 if (a == 111) {
 if (b > c) {
 a = b;
 } else {
 a = c;
 }
 }
 Console.WriteLine(a);
}

(1)
(2)
(3)
!
(4)
!
!
(5)

2

1

3 4

5M = 6 − 5 + 2(1)
= 3

For/While Loops
insertion_procedure(int a[], int p [], int N) {
 int i, j, k;
 for (i = 0; i <= N; i ++) {
 p[i] = i;
 }
 for (i = 2; i <= N; i ++) {
 k = p[i];
 j = 1;
 while (a[p[j - 1]] > a[k]) {
 p[j] = p[j - 1];
 j --;
 }
 p[j] = k;
 }
}

http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

For/While Loops
insertion_procedure(int a[], int p [], int N) {
 int i, j, k;
 for (i = 0; i <= N; i ++) {
 p[i] = i;
 }
 for (i = 2; i <= N; i ++) {
 k = p[i];
 j = 1;
 while (a[p[j - 1]] > a[k]) {
 p[j] = p[j - 1];
 j --;
 }
 p[j] = k;
 }
}
http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

For/While Loops

http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

14 edges

12 nodes

1 connected
component

For/While Loops

http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

14 edges

12 nodes

1 connected
component

M = 14 − 12 + 2(1)
= 4

Alternative
Formula

http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

M = D + 1

Alternative
Formula

http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

M = D + 1

No.Decision Points

Alternative
Formula

http://stackoverflow.com/questions/2669977/control-flow-graph-cyclometric-complexity-for-folowing-procedure

M = 3 + 1
 = 4

Combined Example

http://www.whiteboxtest.com/cyclomatic-complexity.php

int BinSearch (char *item, char *table[], int n) {
 int bot = 0;
 int top = n - 1;
 int mid, cmp;
 while (bot <= top) {
 mid = (bot + top) / 2;
 if (table[mid] == item)
 return mid;
 else if (compare(table[mid], item) < 0)
 top = mid - 1;
 else
 bot = mid + 1;
 }
 return -1; // not found
}

Combined Example

http://www.whiteboxtest.com/cyclomatic-complexity.php

Let’s Play a Game!

Other Metrics

Lines of Code

Test / Production
Code Ratio

ABC Metrics

ABC Metrics

Assignments

Branches

Conditionals

Halstead Volume

Halstead complexity measures
From Wikipedia, the free encyclopedia

Halstead complexity measures are software metrics introduced by Maurice Howard Halstead in 1977[1] as part of his treatise
on establishing an empirical science of software development. Halstead makes the observation that metrics of the software should
reflect the implementation or expression of algorithms in different languages, but be independent of their execution on a specific
platform. These metrics are therefore computed statically from the code.

Halstead's goal was to identify measurable properties of software, and the relations between them. This is similar to the
identification of measurable properties of matter (like the volume, mass, and pressure of a gas) and the relationships between
them (analogous to the gas equation). Thus his metrics are actually not just complexity metrics.

Contents

1 Calculation
2 Example
3 References
4 See also
5 External links

Calculation

For a given problem, Let:

 = the number of distinct operators
 = the number of distinct operands
 = the total number of operators
 = the total number of operands

From these numbers, several measures can be calculated:

Program vocabulary:
Program length:
Calculated program length:
Volume:
Difficulty :
Effort:

The difficulty measure is related to the difficulty of the program to write or understand, e.g. when doing code review.

The effort measure translates into actual coding time using the following relation,

Time required to program: seconds

Halstead's delivered bugs (B) is an estimate for the number of errors in the implementation.

Number of delivered bugs : or, more recently, is accepted[citation needed].

Example

Let us consider the following C program:

main()
{
 int a, b, c, avg;
 scanf(“%d %d %d”, &a, &b, &c);
 avg = (a+b+c)/3;
 printf(“avg = %d”, avg);
}

The unique operators are: main,(),{},int,scanf,&/, printf

The unique operands are: a, b, c, &a, &b, &c, a+b+c, avg, 3, “%d %d %d”, “avg = %d”

η1

η2

N1

N2

η = +η1 η2

N = +N1 N2

= +N̂ η1 log2 η1 η2 log2 η2

V = N × ηlog2

D = ×η1
2

N2
η2

E = D × V

T = E
18

B = E
2
3

3000 B = V
3000

Halstead complexity measures - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Halstead_complexity_measures

1 of 2 2/5/14, 11:59 PM

https://en.wikipedia.org/wiki/Halstead_complexity_measures

Maintainability Index

Type text in the box below:

$
\text{Maintainability Index} = \max \begin{cases}

(171 - 5.2 \times \ln \text{Halstead Volume}
- 0.23 \times \text{Cyclomatic Complexity}
- 16.2 \times \ln \text{Lines of Code}) \times 100 \over
171) \\

0

Preview is shown here:

Maintainability Index = max{
(171−5.2×ln Halstead Volume−0.23×Cyclomatic Complexity−16.2×ln Lines of Code)×100

171)
0

Dynamic Preview of Textarea with MathJax Content http://cdn.mathjax.org/mathjax/latest/test/sample-dynamic-2.html

1 of 1 2/6/14, 11:00 AM

Type text in the box below:

$
0 ≤ \text{Maintainability Index} ≤ 100
$

Preview is shown here:

0 ≤ Maintainability Index ≤ 100

Dynamic Preview of Textarea with MathJax Content http://cdn.mathjax.org/mathjax/latest/test/sample-dynamic-2.html

1 of 1 2/6/14, 11:01 AM

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

Code Duplication

Run Code Run TestsCode — Edit Code Here Preview — Test Your Code Here

Amount

Type Bank Note

Deposit Show Contents Total

Metrics — Cyclomatic Complexity

M Function

16 deposit

14 show

2 total

1 window.onload

var banknotes_20 = 0;
var banknotes_50 = 0;
var banknotes_100 = 0;
var banknotes_500 = 0;
var banknotes_1000 = 0;

var coin_1 = 0;
var coin_2 = 0;
var coin_5 = 0;
var coin_10 = 0;

var coupon_red = 0;
var coupon_blue = 0;
var coupon_yellow = 0;

function deposit() {
 document.getElementById("output").value = "";
 var selectBox = document.getElementById("currency");
 var index = selectBox.selectedIndex;
 var currency = selectBox.options[index].value;

 if(currency == "banknote") {
 var userInput = document.getElementById("input").value;
 var amount = parseFloat(userInput);
 if(amount == 20) {
 banknotes_20 += 1;
 document.getElementById("output").value = "Accepted banknote";
 }
 else if(amount == 50) {
 banknotes_50 += 1;
 document.getElementById("output").value = "Accepted banknote";
 }
 else if(amount == 100) {
 banknotes_100 += 1;
 document.getElementById("output").value = "Accepted banknote";
 }
 else if(amount == 500) {
 banknotes_500 += 1;
 document.getElementById("output").value = "Accepted banknote";
 }
 else if(amount == 1000) {
 banknotes_1000 += 1;
 document.getElementById("output").value = "Accepted banknote";
 }
 else {
 document.getElementById("output").value = "Invalid banknote";
 }
 }
 else if(currency == "coin") {
 var userInput = document.getElementById("input").value;
 var amount = parseFloat(userInput);
 if(amount == 1) {
 coin_1 += 1;
 document.getElementById("output").value = "Accepted coin";
 }
 else if(amount == 2) {
 coin_2 += 1;
 document.getElementById("output").value = "Accepted coin";
 }
 else if(amount == 5) {
 coin_5 += 1;
 document.getElementById("output").value = "Accepted coin";
 }
 else if(amount == 10) {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Coin Purse Exercise file:///Users/dttvb/Dropbox/Software Testing/exercise/exercise.html

1 of 1 2/6/14, 12:06 AM

Tools

CCM

http://www.blunck.info/ccm.html

Istanbul

https://github.com/yahoo/istanbul

Esprima (../index.html) Documentation (../doc/index.html)Demo Project

Coverage Analysis ensures systematic exercise of the parser
Note: This is not a live (in-browser) code coverage report. The analysis is offline (../doc/index.html#coverage) (using Istanbul (https://github.com
/yahoo/istanbul)).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1
1

1

1
1

/*
 Copyright (C) 2012 Ariya Hidayat <ariya.hidayat@gmail.com>
 Copyright (C) 2012 Mathias Bynens <mathias@qiwi.be>
 Copyright (C) 2012 Joost-Wim Boekesteijn <joost-wim@boekesteijn.nl>
 Copyright (C) 2012 Kris Kowal <kris.kowal@cixar.com>
 Copyright (C) 2012 Yusuke Suzuki <utatane.tea@gmail.com>
 Copyright (C) 2012 Arpad Borsos <arpad.borsos@googlemail.com>
 Copyright (C) 2011 Ariya Hidayat <ariya.hidayat@gmail.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*jslint bitwise:true plusplus:true */
/*global esprima:true, define:true, exports:true, window: true,
throwError: true, generateStatement: true, peek: true,
parseAssignmentExpression: true, parseBlock: true, parseExpression: true,
parseFunctionDeclaration: true, parseFunctionExpression: true,
parseFunctionSourceElements: true, parseVariableIdentifier: true,
parseLeftHandSideExpression: true,
parseStatement: true, parseSourceElement: true */

(function (root, factory) {
 'use strict';

 // Universal Module Definition (UMD) to support AMD, CommonJS/Node.js,
 // Rhino, and plain browser loading.
 if (typeof define === 'function' && define.amd) {
 define(['exports'], factory);
 } else if (typeof exports !== 'undefined') {
 factory(exports);

I

E

Code coverage report for esprima/esprima.js

Statements: 99.72% (1760 / 1765) Branches: 98.49% (1107 / 1124) Functions: 100% (154 / 154) Lines: 99.72% (1760 / 1765)

Esprima is created and mantained by Ariya Hidayat
(http://ariya.ofilabs.com/about).

@Esprima (http://twitter.com/esprima)
GitHub (https://github.com/ariya/esprima)

Esprima: Unit Tests http://esprima.org/test/coverage.html

1 of 1 2/5/14, 11:54 PM

Plato

https://github.com/es-analysis/plato

JavaScript Source Analysis

Summary
Total/Average Lines

7660 / 98
Average Maintainability

(http://blogs.msdn.com/b/codeanalysis
/archive/2007/11/20/maintainability-index-

range-and-meaning.aspx)

79.00

0

73

147

220

293

2013-8-272013-6-282013-4-292013-2-28
0

25

50

75

100

2013-8-272013-6-282013-4-292013-2-28

Maintainability (http://blogs.msdn.com/b/codeanalysis/archive/2007/11
/20/maintainability-index-range-and-meaning.aspx)

0

25

50

75

100

src/wrap.jssrc/var/hasOwn.jssrc/queue.jssrc/event.jssrc/data.jssrc/css/swap.jssrc/core/init.jssrc/ajax.js

Lines of code

0

213

426

639

852

src/wrap.jssrc/var/hasOwn.jssrc/queue.jssrc/event.jssrc/data.jssrc/css/swap.jssrc/core/init.jssrc/ajax.js

Estimated errors in implementation (http://en.wikipedia.org
/wiki/Halstead_complexity_measures)

0

5

10

15

20

src/wrap.jssrc/var/hasOwn.jssrc/queue.jssrc/event.jssrc/data.jssrc/css/swap.jssrc/core/init.jssrc/ajax.js

2013-9-26

Average Lines: 98
2013-9-26

Maintainability: 79

src/effects/animatedSelector.js

Maintainability: 91.51

src/wrap.js

Lines: 78

src/wrap.js

Errors: 0.48

Plato - JavaScript Introspection http://es-analysis.github.io/plato/examples/jquery/

1 of 5 2/5/14, 11:52 PM

SonarQube
JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Effort to rating A

0.0

SQALE Rating

A
Technical Debt

3,759.5 days

Lines of Code

1,147K

SQALE History

SQALE Remediation Costs to reduce risk Cost Total

Blocker 17.3 17.3

Critical 147.6 164.9

Major 3,241.7 3,406.6

Minor 352.9 3,759.5

Info 0.0 3,759.5

MoreHighest SQALE remediation costs All characteristics

KeyTool 16.8

AudioFloatConverter 13.4

AffineTransform 13.3

DualPivotQuicksort 13.3

Messages 11.7

A B C D E

File Distribution by SQALE Rating

Technical Debt Pyramid Cost Total

Reusability 0.0 3,759.5

Portability 1,586.0 3,759.5

Maintainability 731.3 2,173.5

Security 52.0 1,442.1

Efficiency 92.2 1,390.1

Changeability 251.8 1,297.9

Reliability 862.4 1,046.2

Testability 183.8 183.8

Depth: 3SQALE Sunburst

July October 2013 April July October 2014

Jan 25, 2014

Nemo without Findbugs version 4, 1.7-SNAPSHOT

Effort to rating A: 0.0

August September October November December 2014

Jan 25, 2014

Nemo without Findbugs version 4, 1.7-SNAPSHOT

Total: 3759.5

Testability: 183.8

Reliability: 862.4

Changeability: 251.8

Efficiency: 92.2

Security: 52

Maintainability: 731.3

Portability: 1586

Reusability: 0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=19

1 of 1 2/5/14, 11:38 PM

JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Effort to rating A

0.0

SQALE Rating

A
Technical Debt

3,759.5 days

Lines of Code

1,147K

SQALE History

SQALE Remediation Costs to reduce risk Cost Total

Blocker 17.3 17.3

Critical 147.6 164.9

Major 3,241.7 3,406.6

Minor 352.9 3,759.5

Info 0.0 3,759.5

MoreHighest SQALE remediation costs All characteristics

KeyTool 16.8

AudioFloatConverter 13.4

AffineTransform 13.3

DualPivotQuicksort 13.3

Messages 11.7

A B C D E

File Distribution by SQALE Rating

Technical Debt Pyramid Cost Total

Reusability 0.0 3,759.5

Portability 1,586.0 3,759.5

Maintainability 731.3 2,173.5

Security 52.0 1,442.1

Efficiency 92.2 1,390.1

Changeability 251.8 1,297.9

Reliability 862.4 1,046.2

Testability 183.8 183.8

Depth: 3SQALE Sunburst

July October 2013 April July October 2014

Jan 25, 2014

Nemo without Findbugs version 4, 1.7-SNAPSHOT

Effort to rating A: 0.0

August September October November December 2014

Jan 25, 2014

Nemo without Findbugs version 4, 1.7-SNAPSHOT

Total: 3759.5

Testability: 183.8

Reliability: 862.4

Changeability: 251.8

Efficiency: 92.2

Security: 52

Maintainability: 731.3

Portability: 1586

Reusability: 0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=19

1 of 1 2/5/14, 11:38 PM

JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Lines of code

1,147,711
2,394,651 lines
515,283 statements
7,523 files

Classes

11,219
458 packages
91,948 functions
3,233 accessors

Documentation

64.5% docu. API
69,101 public API
24,563 undocu. API

Comments

36.2%
650,363 lines

Duplications

5.6%
133,728 lines
4,833 blocks
1,211 files

Size: Lines of code Color: Coverage 0.0% 100.0%

/

sun.nio.cs.ext

javax.swing

javax.swing.plaf.basic

java.awt

com.sun.media.sound

java.util javax.swing.text javax.swing.text.htmlsun.font com.sun.java.util.jar.packjavax.swing.plaf.synth

sun.security.ssl

sun.text.resources

java.util.concurrent

java.lang

sun.security.x509

java.awt.image

sun.security.util

javax.swing.plaf.metal

com.sun.tools.jdijava.net java.io com.sun.crypto.providersun.security.pkcs11com.sun.jndi.ldapsun.miscsun.io

java.text

sun.awt.image

sun.print

sun.tools.tree

com.sun.java.swing.plaf.window

sun.util.resources

com.sun.java.swing.plaf.gtk

sun.awt

sun.tools.jconsole

sun.nio.chcom.sun.imageio.plugins.jpegsun.tools.javajava.lang.invokesun.security.provider.certpathjava.awt.geomjava.securitycom.sun.tools.example.debug

sun.reflect

javax.management

sun.security.provider

sun.security.tools

sun.java2d.pipe

java.beans

com.sun.rowset

com.sun.java.swing.plaf.motif

sun.java2d.loops
com.sun.tools.example.debug.t

sun.text.normalizersun.tools.jconsole.inspectorcom.sun.jmx.mbeanserversun.security.krb5org.jcp.xml.dsig.internal.domsun.managementjava.awt.fontsun.management.snmp.jvm

sun.security.krb5.internal
com.sun.jmx.snmp.IPAcl
javax.management.relation
sun.swing
javax.swing.tree
javax.management.modelmb
com.sun.imageio.plugins.png
javax.crypto
sun.security.jgss.krb5
javax.management.remote.rm

java.util.regexjava.mathcom.sun.tools.example.debusun.rmi.serversun.java2dsun.tools.javaccom.sun.jmx.snmp.daemonjavax.imageio
com.sun.jmx.snmp.agent
sun.net.www.protocol.http
javax.swing.plaf.nimbus
com.sun.imageio.plugins.gif
sun.management.snmp.jvm
java.security.cert
com.sun.rowset.internal
sun.nio.cs
sun.applet
sun.net.httpserver

sun.awt.geomjavax.swing.plaf.multicom.sun.imageio.plugins.bmsun.java2d.piscesjava.util.loggingjavax.print.attribute.standardcom.sun.security.auth.moducom.sun.jmx.snmpsun.util.calendar
sun.security.tools.policytool
javax.swing.text.html.parser
java.util.zip
javax.swing.text.rtf
javax.management.openmb
com.sun.org.apache.xml.int
sun.security.pkcs11.wrapper
java.sql
sun.security.jgss
com.sun.jndi.toolkit.ctx

sun.awt.datatransfercom.sun.jndi.dnsjava.util.concurrent.lockscom.sun.org.apache.xml.insun.rmi.rmiccom.sun.security.authcom.sun.org.apache.xml.injava.awt.eventsun.security.pkcs
com.sun.tools.hat.internal.m
sun.awt.im
com.sun.imageio.plugins.c
com.sun.jmx.remote.intern
javax.management.monito
sun.security.krb5.internal.c
com.sun.tools.example.deb
sun.util.locale
sun.swing.plaf.synth
com.sun.org.apache.xml.in
sun.text.bidi

java.lang.reflectjavax.swing.colorchoosersun.java2d.openglsun.net.wwwsun.invoke.utilsun.tools.asmsun.rmi.transport.tcpjava.util.jarsun.applet.resources
sun.tools.jstat
javax.swing.table
javax.naming
com.sun.security.sasl.diges
javax.imageio.stream
java.awt.datatransfer
sun.net.www.http
sun.net
javax.sound.sampled
sun.rmi.transport

java.nio.filejava.awt.dndsun.nio.fssun.security.ecjava.beans.beancontextcom.sun.jndi.toolkit.dircom.sun.tools.hat.internaljavax.sound.midijavax.imageio.metadata
com.sun.jndi.cosnaming
javax.sql.rowset
java.awt.color
javax.security.auth
sun.tools.jar
javax.print
com.sun.jmx.interceptor
sun.swing.plaf
com.sun.jmx.remote.secur
sun.security.jgss.spnego
javax.naming.ldap

sun.security.rsajavax.net.ssljava.util.concurrent.atomicsun.net.ftp.impljavax.management.remotjava.util.prefsjavax.print.attributesun.rmi.transport.proxy
java.lang.management
sun.rmi.rmic.newrmic.jrmp
javax.security.auth.kerber
com.sun.script.javascript
sun.security.krb5.internal.
java.nio.channels
javax.sql.rowset.serial
sun.security.krb5.internal.
javax.swing.border
sun.security.jgss.wrapper
javax.imageio.spi

javax.management.loadinjava.rmi.serversun.security.pkcs12javax.naming.directoryjavax.naming.spijavax.accessibilitycom.sun.beans.decodersun.awt.dnd
com.sun.tools.hat.internal
sun.reflect.annotation
com.sun.org.apache.xml.i
com.sun.org.apache.xml.i
sun.security.smartcardio
sun.net.www.protocol.http
sun.security.validator
javax.swing.event
java.nio
sun.java2d.cmm.lcmscom.sun.jndi.toolkit.url

sun.security.jcasun.utilcom.sun.net.ssljava.security.specsun.textcom.sun.org.apache.xmljava.rmi.activationcom.sun.jdi
javax.smartcardio
sun.invoke.anon
javax.security.auth.login
sun.management.jmxremsun.jvmstat.monitorcom.sun.beans.findersun.security.provider.cersun.jvmstat.perfdata.monsun.net.idncom.sun.jmx.snmp.interncom.sun.imageio.plugins

javax.scriptjavax.swing.plafcom.sun.org.apache.xmlsun.dcsun.management.countecom.sun.jmx.remote.utilcom.sun.security.sasljavax.crypto.spec
com.sun.org.apache.xmlsun.rmi.rmic.newrmiccom.sun.naming.internalcom.sun.org.apache.xmljava.nio.file.attributejavax.management.timersun.swing.textcom.sun.security.ntlmcom.sun.beans.editorsjavax.swing.undosun.awt.util

sun.security.krb5.internajavax.xml.crypto.dsigsun.util.loggingsun.awt.shellcom.sun.net.httpserversun.rmi.logsun.reflect.miscjavax.swing.filechoosercom.sun.jndi.url.ldapjava.awt.image.renderabsun.net.www.protocol.jarcom.sun.jndi.rmi.registrysun.jvmstat.perfdata.monsun.jvmstat.perfdata.monjavax.sql.rowset.spicom.sun.security.sasl.gssun.jvmstat.perfdata.monjava.awt.printcom.sun.org.apache.xml

org.ietf.jgsssun.audiojava.nio.charsetsun.security.aclcom.sun.org.apache.xmlsun.net.www.protocol.ftpjava.rmicom.sun.jndi.ldap.pooljava.nio.channels.spisun.management.snmp.usun.security.ssl.krb5sun.instrumentcom.sun.security.auth.logsun.launchercom.sun.nio.sctpsun.jvmstat.perfdata.moncom.sun.tools.example.t

sun.net.ftpcom.sun.org.apache.xmljavax.imageio.plugins.jpecom.sun.jndi.ldap.saslcom.sun.tools.script.shelcom.sun.tools.example.dsun.rmi.runtimesun.security.timestampcom.sun.security.auth.casun.reflect.generics.reflecom.sun.net.ssl.internal.sun.management.jdpsun.tools.native2asciijava.lang.refjavax.security.sasl

com.sun.security.sasl.nsun.net.spi.nameservicesun.tracingjava.awt.peerjavax.security.auth.callbsun.net.www.protocol.gjavax.sqlcom.sun.org.apache.xmlcom.sun.security.sasl.uticom.sun.jmx.remote.protsun.tracing.dtracesun.security.internal.speccom.sun.beans.utilsun.tools.serialvercom.sun.org.apache.xml

com.sun.managementjavax.xml.cryptosun.reflect.generics.treesun.tools.jcmdcom.sun.org.apache.xmsun.tools.jmapsun.rmi.registrycom.sun.tools.hat.internsun.management.snmpcom.sun.org.apache.xmsun.java2d.pipe.hwcom.sun.beanscom.sun.tools.attachsun.net.utilcom.sun.script.utilcom.sun.rmi.rmid

com.sun.tools.hat.interncom.sun.org.apache.xmsun.net.smtpcom.sun.jdi.requestcom.sun.org.apache.xmsun.tools.jpscom.sun.jndi.ldap.extsun.java2d.cmmjavax.rmi.sslcom.sun.imageio.spisun.net.spijavax.xml.crypto.dsig.spsun.tools.jstatdjava.nio.file.spijava.appletjavax.security.auth.x500

sun.reflect.generics.repjavax.xml.crypto.dsig.kecom.sun.awtjavax.security.certcom.sun.tools.hatsun.net.www.protocol.filsun.tools.jstackcom.sun.jmx.snmp.tasksun.swing.tablesun.management.countcom.sun.org.apache.xmsun.tools.jinfocom.sun.security.cert.incom.sun.jmx.snmp.defacom.sun.jdi.event

sun.reflect.generics.visisun.net.www.protocol.hsun.security.krb5.internacom.sun.jndi.toolkit.corbcom.sun.java.swingjavax.xml.crypto.domsun.security.actionsun.security.krb5.interncom.sun.jndi.url.rmijava.awt.imcom.sun.rowset.providesun.net.www.protocol.mcom.sun.jdi.connectjavax.netsun.net.www.content.im

sun.misc.resourcescom.sun.tracing.dtracejavax.xml.crypto.dsig.docom.sun.org.apache.xmjavax.naming.eventcom.sun.imageio.streamorg.jcp.xml.dsig.internasun.security.jgss.spijavax.sound.sampled.spcom.sun.java.browser.djavax.print.eventjava.lang.annotationcom.sun.org.apache.xm

sun.reflect.generics.factjava.rmi.registrycom.oracle.netjava.security.interfacescom.sun.tracingsun.reflect.generics.scosun.net.www.protocol.hjava.rmi.dgccom.sun.jndi.url.iiopsun.tools.utilcom.sun.tools.jconsole

javax.imageio.eventcom.sun.jndi.url.dnscom.sun.net.httpserver.javax.sound.midi.spijava.security.aclcom.sun.jmx.defaultsjava.text.spisun.swing.iconsun.swing.plaf.windows
com.sun.pept.eptsun.net.www.protocol.ncom.sun.demo.jvmti.hpjava.awt.im.spicom.sun.pept.presentatsun.beans.editorssun.net.www.content.au

Key: net.java.openjdk:jdk7
Language: Java
Profile: Nemo without Findbugs (version 4)

Issues

81,984

Technical Debt

3,759.5 days

 Blocker 400

 Critical 6,324

 Major 57,425

 Minor 17,835

 Info 0

 Alerts : Duplicated lines (%) > 5.

Complexity

3.2 /function

26.2 /class

39.1 /file
Total: 294,053

 Functions Files

2012 April July October 2013 April July October 2014

Feb 04, 2012 Technical Debt: 10,697.0

Lines of code

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,00011,00012,00013,000

C
o

ve
ra

g
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=1

1 of 1 2/5/14, 11:41 PM

JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Lines of code

1,147,711
2,394,651 lines
515,283 statements
7,523 files

Classes

11,219
458 packages
91,948 functions
3,233 accessors

Documentation

64.5% docu. API
69,101 public API
24,563 undocu. API

Comments

36.2%
650,363 lines

Duplications

5.6%
133,728 lines
4,833 blocks
1,211 files

Size: Lines of code Color: Coverage 0.0% 100.0%

/

sun.nio.cs.ext

javax.swing

javax.swing.plaf.basic

java.awt

com.sun.media.sound

java.util javax.swing.text javax.swing.text.htmlsun.font com.sun.java.util.jar.packjavax.swing.plaf.synth

sun.security.ssl

sun.text.resources

java.util.concurrent

java.lang

sun.security.x509

java.awt.image

sun.security.util

javax.swing.plaf.metal

com.sun.tools.jdijava.net java.io com.sun.crypto.providersun.security.pkcs11com.sun.jndi.ldapsun.miscsun.io

java.text

sun.awt.image

sun.print

sun.tools.tree

com.sun.java.swing.plaf.window

sun.util.resources

com.sun.java.swing.plaf.gtk

sun.awt

sun.tools.jconsole

sun.nio.chcom.sun.imageio.plugins.jpegsun.tools.javajava.lang.invokesun.security.provider.certpathjava.awt.geomjava.securitycom.sun.tools.example.debug

sun.reflect

javax.management

sun.security.provider

sun.security.tools

sun.java2d.pipe

java.beans

com.sun.rowset

com.sun.java.swing.plaf.motif

sun.java2d.loops
com.sun.tools.example.debug.t

sun.text.normalizersun.tools.jconsole.inspectorcom.sun.jmx.mbeanserversun.security.krb5org.jcp.xml.dsig.internal.domsun.managementjava.awt.fontsun.management.snmp.jvm

sun.security.krb5.internal
com.sun.jmx.snmp.IPAcl
javax.management.relation
sun.swing
javax.swing.tree
javax.management.modelmb
com.sun.imageio.plugins.png
javax.crypto
sun.security.jgss.krb5
javax.management.remote.rm

java.util.regexjava.mathcom.sun.tools.example.debusun.rmi.serversun.java2dsun.tools.javaccom.sun.jmx.snmp.daemonjavax.imageio
com.sun.jmx.snmp.agent
sun.net.www.protocol.http
javax.swing.plaf.nimbus
com.sun.imageio.plugins.gif
sun.management.snmp.jvm
java.security.cert
com.sun.rowset.internal
sun.nio.cs
sun.applet
sun.net.httpserver

sun.awt.geomjavax.swing.plaf.multicom.sun.imageio.plugins.bmsun.java2d.piscesjava.util.loggingjavax.print.attribute.standardcom.sun.security.auth.moducom.sun.jmx.snmpsun.util.calendar
sun.security.tools.policytool
javax.swing.text.html.parser
java.util.zip
javax.swing.text.rtf
javax.management.openmb
com.sun.org.apache.xml.int
sun.security.pkcs11.wrapper
java.sql
sun.security.jgss
com.sun.jndi.toolkit.ctx

sun.awt.datatransfercom.sun.jndi.dnsjava.util.concurrent.lockscom.sun.org.apache.xml.insun.rmi.rmiccom.sun.security.authcom.sun.org.apache.xml.injava.awt.eventsun.security.pkcs
com.sun.tools.hat.internal.m
sun.awt.im
com.sun.imageio.plugins.c
com.sun.jmx.remote.intern
javax.management.monito
sun.security.krb5.internal.c
com.sun.tools.example.deb
sun.util.locale
sun.swing.plaf.synth
com.sun.org.apache.xml.in
sun.text.bidi

java.lang.reflectjavax.swing.colorchoosersun.java2d.openglsun.net.wwwsun.invoke.utilsun.tools.asmsun.rmi.transport.tcpjava.util.jarsun.applet.resources
sun.tools.jstat
javax.swing.table
javax.naming
com.sun.security.sasl.diges
javax.imageio.stream
java.awt.datatransfer
sun.net.www.http
sun.net
javax.sound.sampled
sun.rmi.transport

java.nio.filejava.awt.dndsun.nio.fssun.security.ecjava.beans.beancontextcom.sun.jndi.toolkit.dircom.sun.tools.hat.internaljavax.sound.midijavax.imageio.metadata
com.sun.jndi.cosnaming
javax.sql.rowset
java.awt.color
javax.security.auth
sun.tools.jar
javax.print
com.sun.jmx.interceptor
sun.swing.plaf
com.sun.jmx.remote.secur
sun.security.jgss.spnego
javax.naming.ldap

sun.security.rsajavax.net.ssljava.util.concurrent.atomicsun.net.ftp.impljavax.management.remotjava.util.prefsjavax.print.attributesun.rmi.transport.proxy
java.lang.management
sun.rmi.rmic.newrmic.jrmp
javax.security.auth.kerber
com.sun.script.javascript
sun.security.krb5.internal.
java.nio.channels
javax.sql.rowset.serial
sun.security.krb5.internal.
javax.swing.border
sun.security.jgss.wrapper
javax.imageio.spi

javax.management.loadinjava.rmi.serversun.security.pkcs12javax.naming.directoryjavax.naming.spijavax.accessibilitycom.sun.beans.decodersun.awt.dnd
com.sun.tools.hat.internal
sun.reflect.annotation
com.sun.org.apache.xml.i
com.sun.org.apache.xml.i
sun.security.smartcardio
sun.net.www.protocol.http
sun.security.validator
javax.swing.event
java.nio
sun.java2d.cmm.lcmscom.sun.jndi.toolkit.url

sun.security.jcasun.utilcom.sun.net.ssljava.security.specsun.textcom.sun.org.apache.xmljava.rmi.activationcom.sun.jdi
javax.smartcardio
sun.invoke.anon
javax.security.auth.login
sun.management.jmxremsun.jvmstat.monitorcom.sun.beans.findersun.security.provider.cersun.jvmstat.perfdata.monsun.net.idncom.sun.jmx.snmp.interncom.sun.imageio.plugins

javax.scriptjavax.swing.plafcom.sun.org.apache.xmlsun.dcsun.management.countecom.sun.jmx.remote.utilcom.sun.security.sasljavax.crypto.spec
com.sun.org.apache.xmlsun.rmi.rmic.newrmiccom.sun.naming.internalcom.sun.org.apache.xmljava.nio.file.attributejavax.management.timersun.swing.textcom.sun.security.ntlmcom.sun.beans.editorsjavax.swing.undosun.awt.util

sun.security.krb5.internajavax.xml.crypto.dsigsun.util.loggingsun.awt.shellcom.sun.net.httpserversun.rmi.logsun.reflect.miscjavax.swing.filechoosercom.sun.jndi.url.ldapjava.awt.image.renderabsun.net.www.protocol.jarcom.sun.jndi.rmi.registrysun.jvmstat.perfdata.monsun.jvmstat.perfdata.monjavax.sql.rowset.spicom.sun.security.sasl.gssun.jvmstat.perfdata.monjava.awt.printcom.sun.org.apache.xml

org.ietf.jgsssun.audiojava.nio.charsetsun.security.aclcom.sun.org.apache.xmlsun.net.www.protocol.ftpjava.rmicom.sun.jndi.ldap.pooljava.nio.channels.spisun.management.snmp.usun.security.ssl.krb5sun.instrumentcom.sun.security.auth.logsun.launchercom.sun.nio.sctpsun.jvmstat.perfdata.moncom.sun.tools.example.t

sun.net.ftpcom.sun.org.apache.xmljavax.imageio.plugins.jpecom.sun.jndi.ldap.saslcom.sun.tools.script.shelcom.sun.tools.example.dsun.rmi.runtimesun.security.timestampcom.sun.security.auth.casun.reflect.generics.reflecom.sun.net.ssl.internal.sun.management.jdpsun.tools.native2asciijava.lang.refjavax.security.sasl

com.sun.security.sasl.nsun.net.spi.nameservicesun.tracingjava.awt.peerjavax.security.auth.callbsun.net.www.protocol.gjavax.sqlcom.sun.org.apache.xmlcom.sun.security.sasl.uticom.sun.jmx.remote.protsun.tracing.dtracesun.security.internal.speccom.sun.beans.utilsun.tools.serialvercom.sun.org.apache.xml

com.sun.managementjavax.xml.cryptosun.reflect.generics.treesun.tools.jcmdcom.sun.org.apache.xmsun.tools.jmapsun.rmi.registrycom.sun.tools.hat.internsun.management.snmpcom.sun.org.apache.xmsun.java2d.pipe.hwcom.sun.beanscom.sun.tools.attachsun.net.utilcom.sun.script.utilcom.sun.rmi.rmid

com.sun.tools.hat.interncom.sun.org.apache.xmsun.net.smtpcom.sun.jdi.requestcom.sun.org.apache.xmsun.tools.jpscom.sun.jndi.ldap.extsun.java2d.cmmjavax.rmi.sslcom.sun.imageio.spisun.net.spijavax.xml.crypto.dsig.spsun.tools.jstatdjava.nio.file.spijava.appletjavax.security.auth.x500

sun.reflect.generics.repjavax.xml.crypto.dsig.kecom.sun.awtjavax.security.certcom.sun.tools.hatsun.net.www.protocol.filsun.tools.jstackcom.sun.jmx.snmp.tasksun.swing.tablesun.management.countcom.sun.org.apache.xmsun.tools.jinfocom.sun.security.cert.incom.sun.jmx.snmp.defacom.sun.jdi.event

sun.reflect.generics.visisun.net.www.protocol.hsun.security.krb5.internacom.sun.jndi.toolkit.corbcom.sun.java.swingjavax.xml.crypto.domsun.security.actionsun.security.krb5.interncom.sun.jndi.url.rmijava.awt.imcom.sun.rowset.providesun.net.www.protocol.mcom.sun.jdi.connectjavax.netsun.net.www.content.im

sun.misc.resourcescom.sun.tracing.dtracejavax.xml.crypto.dsig.docom.sun.org.apache.xmjavax.naming.eventcom.sun.imageio.streamorg.jcp.xml.dsig.internasun.security.jgss.spijavax.sound.sampled.spcom.sun.java.browser.djavax.print.eventjava.lang.annotationcom.sun.org.apache.xm

sun.reflect.generics.factjava.rmi.registrycom.oracle.netjava.security.interfacescom.sun.tracingsun.reflect.generics.scosun.net.www.protocol.hjava.rmi.dgccom.sun.jndi.url.iiopsun.tools.utilcom.sun.tools.jconsole

javax.imageio.eventcom.sun.jndi.url.dnscom.sun.net.httpserver.javax.sound.midi.spijava.security.aclcom.sun.jmx.defaultsjava.text.spisun.swing.iconsun.swing.plaf.windows
com.sun.pept.eptsun.net.www.protocol.ncom.sun.demo.jvmti.hpjava.awt.im.spicom.sun.pept.presentatsun.beans.editorssun.net.www.content.au

Key: net.java.openjdk:jdk7
Language: Java
Profile: Nemo without Findbugs (version 4)

Issues

81,984

Technical Debt

3,759.5 days

 Blocker 400

 Critical 6,324

 Major 57,425

 Minor 17,835

 Info 0

 Alerts : Duplicated lines (%) > 5.

Complexity

3.2 /function

26.2 /class

39.1 /file
Total: 294,053

 Functions Files

2012 April July October 2013 April July October 2014

Feb 04, 2012 Technical Debt: 10,697.0

Lines of code

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,00011,00012,00013,000
C

o
ve

ra
g

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=1

1 of 1 2/5/14, 11:41 PM

JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Lines of code

1,147,711
2,394,651 lines
515,283 statements
7,523 files

Classes

11,219
458 packages
91,948 functions
3,233 accessors

Documentation

64.5% docu. API
69,101 public API
24,563 undocu. API

Comments

36.2%
650,363 lines

Duplications

5.6%
133,728 lines
4,833 blocks
1,211 files

Size: Lines of code Color: Coverage 0.0% 100.0%

/

sun.nio.cs.ext

javax.swing

javax.swing.plaf.basic

java.awt

com.sun.media.sound

java.util javax.swing.text javax.swing.text.htmlsun.font com.sun.java.util.jar.packjavax.swing.plaf.synth

sun.security.ssl

sun.text.resources

java.util.concurrent

java.lang

sun.security.x509

java.awt.image

sun.security.util

javax.swing.plaf.metal

com.sun.tools.jdijava.net java.io com.sun.crypto.providersun.security.pkcs11com.sun.jndi.ldapsun.miscsun.io

java.text

sun.awt.image

sun.print

sun.tools.tree

com.sun.java.swing.plaf.window

sun.util.resources

com.sun.java.swing.plaf.gtk

sun.awt

sun.tools.jconsole

sun.nio.chcom.sun.imageio.plugins.jpegsun.tools.javajava.lang.invokesun.security.provider.certpathjava.awt.geomjava.securitycom.sun.tools.example.debug

sun.reflect

javax.management

sun.security.provider

sun.security.tools

sun.java2d.pipe

java.beans

com.sun.rowset

com.sun.java.swing.plaf.motif

sun.java2d.loops
com.sun.tools.example.debug.t

sun.text.normalizersun.tools.jconsole.inspectorcom.sun.jmx.mbeanserversun.security.krb5org.jcp.xml.dsig.internal.domsun.managementjava.awt.fontsun.management.snmp.jvm

sun.security.krb5.internal
com.sun.jmx.snmp.IPAcl
javax.management.relation
sun.swing
javax.swing.tree
javax.management.modelmb
com.sun.imageio.plugins.png
javax.crypto
sun.security.jgss.krb5
javax.management.remote.rm

java.util.regexjava.mathcom.sun.tools.example.debusun.rmi.serversun.java2dsun.tools.javaccom.sun.jmx.snmp.daemonjavax.imageio
com.sun.jmx.snmp.agent
sun.net.www.protocol.http
javax.swing.plaf.nimbus
com.sun.imageio.plugins.gif
sun.management.snmp.jvm
java.security.cert
com.sun.rowset.internal
sun.nio.cs
sun.applet
sun.net.httpserver

sun.awt.geomjavax.swing.plaf.multicom.sun.imageio.plugins.bmsun.java2d.piscesjava.util.loggingjavax.print.attribute.standardcom.sun.security.auth.moducom.sun.jmx.snmpsun.util.calendar
sun.security.tools.policytool
javax.swing.text.html.parser
java.util.zip
javax.swing.text.rtf
javax.management.openmb
com.sun.org.apache.xml.int
sun.security.pkcs11.wrapper
java.sql
sun.security.jgss
com.sun.jndi.toolkit.ctx

sun.awt.datatransfercom.sun.jndi.dnsjava.util.concurrent.lockscom.sun.org.apache.xml.insun.rmi.rmiccom.sun.security.authcom.sun.org.apache.xml.injava.awt.eventsun.security.pkcs
com.sun.tools.hat.internal.m
sun.awt.im
com.sun.imageio.plugins.c
com.sun.jmx.remote.intern
javax.management.monito
sun.security.krb5.internal.c
com.sun.tools.example.deb
sun.util.locale
sun.swing.plaf.synth
com.sun.org.apache.xml.in
sun.text.bidi

java.lang.reflectjavax.swing.colorchoosersun.java2d.openglsun.net.wwwsun.invoke.utilsun.tools.asmsun.rmi.transport.tcpjava.util.jarsun.applet.resources
sun.tools.jstat
javax.swing.table
javax.naming
com.sun.security.sasl.diges
javax.imageio.stream
java.awt.datatransfer
sun.net.www.http
sun.net
javax.sound.sampled
sun.rmi.transport

java.nio.filejava.awt.dndsun.nio.fssun.security.ecjava.beans.beancontextcom.sun.jndi.toolkit.dircom.sun.tools.hat.internaljavax.sound.midijavax.imageio.metadata
com.sun.jndi.cosnaming
javax.sql.rowset
java.awt.color
javax.security.auth
sun.tools.jar
javax.print
com.sun.jmx.interceptor
sun.swing.plaf
com.sun.jmx.remote.secur
sun.security.jgss.spnego
javax.naming.ldap

sun.security.rsajavax.net.ssljava.util.concurrent.atomicsun.net.ftp.impljavax.management.remotjava.util.prefsjavax.print.attributesun.rmi.transport.proxy
java.lang.management
sun.rmi.rmic.newrmic.jrmp
javax.security.auth.kerber
com.sun.script.javascript
sun.security.krb5.internal.
java.nio.channels
javax.sql.rowset.serial
sun.security.krb5.internal.
javax.swing.border
sun.security.jgss.wrapper
javax.imageio.spi

javax.management.loadinjava.rmi.serversun.security.pkcs12javax.naming.directoryjavax.naming.spijavax.accessibilitycom.sun.beans.decodersun.awt.dnd
com.sun.tools.hat.internal
sun.reflect.annotation
com.sun.org.apache.xml.i
com.sun.org.apache.xml.i
sun.security.smartcardio
sun.net.www.protocol.http
sun.security.validator
javax.swing.event
java.nio
sun.java2d.cmm.lcmscom.sun.jndi.toolkit.url

sun.security.jcasun.utilcom.sun.net.ssljava.security.specsun.textcom.sun.org.apache.xmljava.rmi.activationcom.sun.jdi
javax.smartcardio
sun.invoke.anon
javax.security.auth.login
sun.management.jmxremsun.jvmstat.monitorcom.sun.beans.findersun.security.provider.cersun.jvmstat.perfdata.monsun.net.idncom.sun.jmx.snmp.interncom.sun.imageio.plugins

javax.scriptjavax.swing.plafcom.sun.org.apache.xmlsun.dcsun.management.countecom.sun.jmx.remote.utilcom.sun.security.sasljavax.crypto.spec
com.sun.org.apache.xmlsun.rmi.rmic.newrmiccom.sun.naming.internalcom.sun.org.apache.xmljava.nio.file.attributejavax.management.timersun.swing.textcom.sun.security.ntlmcom.sun.beans.editorsjavax.swing.undosun.awt.util

sun.security.krb5.internajavax.xml.crypto.dsigsun.util.loggingsun.awt.shellcom.sun.net.httpserversun.rmi.logsun.reflect.miscjavax.swing.filechoosercom.sun.jndi.url.ldapjava.awt.image.renderabsun.net.www.protocol.jarcom.sun.jndi.rmi.registrysun.jvmstat.perfdata.monsun.jvmstat.perfdata.monjavax.sql.rowset.spicom.sun.security.sasl.gssun.jvmstat.perfdata.monjava.awt.printcom.sun.org.apache.xml

org.ietf.jgsssun.audiojava.nio.charsetsun.security.aclcom.sun.org.apache.xmlsun.net.www.protocol.ftpjava.rmicom.sun.jndi.ldap.pooljava.nio.channels.spisun.management.snmp.usun.security.ssl.krb5sun.instrumentcom.sun.security.auth.logsun.launchercom.sun.nio.sctpsun.jvmstat.perfdata.moncom.sun.tools.example.t

sun.net.ftpcom.sun.org.apache.xmljavax.imageio.plugins.jpecom.sun.jndi.ldap.saslcom.sun.tools.script.shelcom.sun.tools.example.dsun.rmi.runtimesun.security.timestampcom.sun.security.auth.casun.reflect.generics.reflecom.sun.net.ssl.internal.sun.management.jdpsun.tools.native2asciijava.lang.refjavax.security.sasl

com.sun.security.sasl.nsun.net.spi.nameservicesun.tracingjava.awt.peerjavax.security.auth.callbsun.net.www.protocol.gjavax.sqlcom.sun.org.apache.xmlcom.sun.security.sasl.uticom.sun.jmx.remote.protsun.tracing.dtracesun.security.internal.speccom.sun.beans.utilsun.tools.serialvercom.sun.org.apache.xml

com.sun.managementjavax.xml.cryptosun.reflect.generics.treesun.tools.jcmdcom.sun.org.apache.xmsun.tools.jmapsun.rmi.registrycom.sun.tools.hat.internsun.management.snmpcom.sun.org.apache.xmsun.java2d.pipe.hwcom.sun.beanscom.sun.tools.attachsun.net.utilcom.sun.script.utilcom.sun.rmi.rmid

com.sun.tools.hat.interncom.sun.org.apache.xmsun.net.smtpcom.sun.jdi.requestcom.sun.org.apache.xmsun.tools.jpscom.sun.jndi.ldap.extsun.java2d.cmmjavax.rmi.sslcom.sun.imageio.spisun.net.spijavax.xml.crypto.dsig.spsun.tools.jstatdjava.nio.file.spijava.appletjavax.security.auth.x500

sun.reflect.generics.repjavax.xml.crypto.dsig.kecom.sun.awtjavax.security.certcom.sun.tools.hatsun.net.www.protocol.filsun.tools.jstackcom.sun.jmx.snmp.tasksun.swing.tablesun.management.countcom.sun.org.apache.xmsun.tools.jinfocom.sun.security.cert.incom.sun.jmx.snmp.defacom.sun.jdi.event

sun.reflect.generics.visisun.net.www.protocol.hsun.security.krb5.internacom.sun.jndi.toolkit.corbcom.sun.java.swingjavax.xml.crypto.domsun.security.actionsun.security.krb5.interncom.sun.jndi.url.rmijava.awt.imcom.sun.rowset.providesun.net.www.protocol.mcom.sun.jdi.connectjavax.netsun.net.www.content.im

sun.misc.resourcescom.sun.tracing.dtracejavax.xml.crypto.dsig.docom.sun.org.apache.xmjavax.naming.eventcom.sun.imageio.streamorg.jcp.xml.dsig.internasun.security.jgss.spijavax.sound.sampled.spcom.sun.java.browser.djavax.print.eventjava.lang.annotationcom.sun.org.apache.xm

sun.reflect.generics.factjava.rmi.registrycom.oracle.netjava.security.interfacescom.sun.tracingsun.reflect.generics.scosun.net.www.protocol.hjava.rmi.dgccom.sun.jndi.url.iiopsun.tools.utilcom.sun.tools.jconsole

javax.imageio.eventcom.sun.jndi.url.dnscom.sun.net.httpserver.javax.sound.midi.spijava.security.aclcom.sun.jmx.defaultsjava.text.spisun.swing.iconsun.swing.plaf.windows
com.sun.pept.eptsun.net.www.protocol.ncom.sun.demo.jvmti.hpjava.awt.im.spicom.sun.pept.presentatsun.beans.editorssun.net.www.content.au

Key: net.java.openjdk:jdk7
Language: Java
Profile: Nemo without Findbugs (version 4)

Issues

81,984

Technical Debt

3,759.5 days

 Blocker 400

 Critical 6,324

 Major 57,425

 Minor 17,835

 Info 0

 Alerts : Duplicated lines (%) > 5.

Complexity

3.2 /function

26.2 /class

39.1 /file
Total: 294,053

 Functions Files

2012 April July October 2013 April July October 2014

Feb 04, 2012 Technical Debt: 10,697.0

Lines of code

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,00011,00012,00013,000

C
o

ve
ra

g
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=1

1 of 1 2/5/14, 11:41 PM

JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Lines of code

1,147,711
2,394,651 lines
515,283 statements
7,523 files

Classes

11,219
458 packages
91,948 functions
3,233 accessors

Documentation

64.5% docu. API
69,101 public API
24,563 undocu. API

Comments

36.2%
650,363 lines

Duplications

5.6%
133,728 lines
4,833 blocks
1,211 files

Size: Lines of code Color: Coverage 0.0% 100.0%

/

sun.nio.cs.ext

javax.swing

javax.swing.plaf.basic

java.awt

com.sun.media.sound

java.util javax.swing.text javax.swing.text.htmlsun.font com.sun.java.util.jar.packjavax.swing.plaf.synth

sun.security.ssl

sun.text.resources

java.util.concurrent

java.lang

sun.security.x509

java.awt.image

sun.security.util

javax.swing.plaf.metal

com.sun.tools.jdijava.net java.io com.sun.crypto.providersun.security.pkcs11com.sun.jndi.ldapsun.miscsun.io

java.text

sun.awt.image

sun.print

sun.tools.tree

com.sun.java.swing.plaf.window

sun.util.resources

com.sun.java.swing.plaf.gtk

sun.awt

sun.tools.jconsole

sun.nio.chcom.sun.imageio.plugins.jpegsun.tools.javajava.lang.invokesun.security.provider.certpathjava.awt.geomjava.securitycom.sun.tools.example.debug

sun.reflect

javax.management

sun.security.provider

sun.security.tools

sun.java2d.pipe

java.beans

com.sun.rowset

com.sun.java.swing.plaf.motif

sun.java2d.loops
com.sun.tools.example.debug.t

sun.text.normalizersun.tools.jconsole.inspectorcom.sun.jmx.mbeanserversun.security.krb5org.jcp.xml.dsig.internal.domsun.managementjava.awt.fontsun.management.snmp.jvm

sun.security.krb5.internal
com.sun.jmx.snmp.IPAcl
javax.management.relation
sun.swing
javax.swing.tree
javax.management.modelmb
com.sun.imageio.plugins.png
javax.crypto
sun.security.jgss.krb5
javax.management.remote.rm

java.util.regexjava.mathcom.sun.tools.example.debusun.rmi.serversun.java2dsun.tools.javaccom.sun.jmx.snmp.daemonjavax.imageio
com.sun.jmx.snmp.agent
sun.net.www.protocol.http
javax.swing.plaf.nimbus
com.sun.imageio.plugins.gif
sun.management.snmp.jvm
java.security.cert
com.sun.rowset.internal
sun.nio.cs
sun.applet
sun.net.httpserver

sun.awt.geomjavax.swing.plaf.multicom.sun.imageio.plugins.bmsun.java2d.piscesjava.util.loggingjavax.print.attribute.standardcom.sun.security.auth.moducom.sun.jmx.snmpsun.util.calendar
sun.security.tools.policytool
javax.swing.text.html.parser
java.util.zip
javax.swing.text.rtf
javax.management.openmb
com.sun.org.apache.xml.int
sun.security.pkcs11.wrapper
java.sql
sun.security.jgss
com.sun.jndi.toolkit.ctx

sun.awt.datatransfercom.sun.jndi.dnsjava.util.concurrent.lockscom.sun.org.apache.xml.insun.rmi.rmiccom.sun.security.authcom.sun.org.apache.xml.injava.awt.eventsun.security.pkcs
com.sun.tools.hat.internal.m
sun.awt.im
com.sun.imageio.plugins.c
com.sun.jmx.remote.intern
javax.management.monito
sun.security.krb5.internal.c
com.sun.tools.example.deb
sun.util.locale
sun.swing.plaf.synth
com.sun.org.apache.xml.in
sun.text.bidi

java.lang.reflectjavax.swing.colorchoosersun.java2d.openglsun.net.wwwsun.invoke.utilsun.tools.asmsun.rmi.transport.tcpjava.util.jarsun.applet.resources
sun.tools.jstat
javax.swing.table
javax.naming
com.sun.security.sasl.diges
javax.imageio.stream
java.awt.datatransfer
sun.net.www.http
sun.net
javax.sound.sampled
sun.rmi.transport

java.nio.filejava.awt.dndsun.nio.fssun.security.ecjava.beans.beancontextcom.sun.jndi.toolkit.dircom.sun.tools.hat.internaljavax.sound.midijavax.imageio.metadata
com.sun.jndi.cosnaming
javax.sql.rowset
java.awt.color
javax.security.auth
sun.tools.jar
javax.print
com.sun.jmx.interceptor
sun.swing.plaf
com.sun.jmx.remote.secur
sun.security.jgss.spnego
javax.naming.ldap

sun.security.rsajavax.net.ssljava.util.concurrent.atomicsun.net.ftp.impljavax.management.remotjava.util.prefsjavax.print.attributesun.rmi.transport.proxy
java.lang.management
sun.rmi.rmic.newrmic.jrmp
javax.security.auth.kerber
com.sun.script.javascript
sun.security.krb5.internal.
java.nio.channels
javax.sql.rowset.serial
sun.security.krb5.internal.
javax.swing.border
sun.security.jgss.wrapper
javax.imageio.spi

javax.management.loadinjava.rmi.serversun.security.pkcs12javax.naming.directoryjavax.naming.spijavax.accessibilitycom.sun.beans.decodersun.awt.dnd
com.sun.tools.hat.internal
sun.reflect.annotation
com.sun.org.apache.xml.i
com.sun.org.apache.xml.i
sun.security.smartcardio
sun.net.www.protocol.http
sun.security.validator
javax.swing.event
java.nio
sun.java2d.cmm.lcmscom.sun.jndi.toolkit.url

sun.security.jcasun.utilcom.sun.net.ssljava.security.specsun.textcom.sun.org.apache.xmljava.rmi.activationcom.sun.jdi
javax.smartcardio
sun.invoke.anon
javax.security.auth.login
sun.management.jmxremsun.jvmstat.monitorcom.sun.beans.findersun.security.provider.cersun.jvmstat.perfdata.monsun.net.idncom.sun.jmx.snmp.interncom.sun.imageio.plugins

javax.scriptjavax.swing.plafcom.sun.org.apache.xmlsun.dcsun.management.countecom.sun.jmx.remote.utilcom.sun.security.sasljavax.crypto.spec
com.sun.org.apache.xmlsun.rmi.rmic.newrmiccom.sun.naming.internalcom.sun.org.apache.xmljava.nio.file.attributejavax.management.timersun.swing.textcom.sun.security.ntlmcom.sun.beans.editorsjavax.swing.undosun.awt.util

sun.security.krb5.internajavax.xml.crypto.dsigsun.util.loggingsun.awt.shellcom.sun.net.httpserversun.rmi.logsun.reflect.miscjavax.swing.filechoosercom.sun.jndi.url.ldapjava.awt.image.renderabsun.net.www.protocol.jarcom.sun.jndi.rmi.registrysun.jvmstat.perfdata.monsun.jvmstat.perfdata.monjavax.sql.rowset.spicom.sun.security.sasl.gssun.jvmstat.perfdata.monjava.awt.printcom.sun.org.apache.xml

org.ietf.jgsssun.audiojava.nio.charsetsun.security.aclcom.sun.org.apache.xmlsun.net.www.protocol.ftpjava.rmicom.sun.jndi.ldap.pooljava.nio.channels.spisun.management.snmp.usun.security.ssl.krb5sun.instrumentcom.sun.security.auth.logsun.launchercom.sun.nio.sctpsun.jvmstat.perfdata.moncom.sun.tools.example.t

sun.net.ftpcom.sun.org.apache.xmljavax.imageio.plugins.jpecom.sun.jndi.ldap.saslcom.sun.tools.script.shelcom.sun.tools.example.dsun.rmi.runtimesun.security.timestampcom.sun.security.auth.casun.reflect.generics.reflecom.sun.net.ssl.internal.sun.management.jdpsun.tools.native2asciijava.lang.refjavax.security.sasl

com.sun.security.sasl.nsun.net.spi.nameservicesun.tracingjava.awt.peerjavax.security.auth.callbsun.net.www.protocol.gjavax.sqlcom.sun.org.apache.xmlcom.sun.security.sasl.uticom.sun.jmx.remote.protsun.tracing.dtracesun.security.internal.speccom.sun.beans.utilsun.tools.serialvercom.sun.org.apache.xml

com.sun.managementjavax.xml.cryptosun.reflect.generics.treesun.tools.jcmdcom.sun.org.apache.xmsun.tools.jmapsun.rmi.registrycom.sun.tools.hat.internsun.management.snmpcom.sun.org.apache.xmsun.java2d.pipe.hwcom.sun.beanscom.sun.tools.attachsun.net.utilcom.sun.script.utilcom.sun.rmi.rmid

com.sun.tools.hat.interncom.sun.org.apache.xmsun.net.smtpcom.sun.jdi.requestcom.sun.org.apache.xmsun.tools.jpscom.sun.jndi.ldap.extsun.java2d.cmmjavax.rmi.sslcom.sun.imageio.spisun.net.spijavax.xml.crypto.dsig.spsun.tools.jstatdjava.nio.file.spijava.appletjavax.security.auth.x500

sun.reflect.generics.repjavax.xml.crypto.dsig.kecom.sun.awtjavax.security.certcom.sun.tools.hatsun.net.www.protocol.filsun.tools.jstackcom.sun.jmx.snmp.tasksun.swing.tablesun.management.countcom.sun.org.apache.xmsun.tools.jinfocom.sun.security.cert.incom.sun.jmx.snmp.defacom.sun.jdi.event

sun.reflect.generics.visisun.net.www.protocol.hsun.security.krb5.internacom.sun.jndi.toolkit.corbcom.sun.java.swingjavax.xml.crypto.domsun.security.actionsun.security.krb5.interncom.sun.jndi.url.rmijava.awt.imcom.sun.rowset.providesun.net.www.protocol.mcom.sun.jdi.connectjavax.netsun.net.www.content.im

sun.misc.resourcescom.sun.tracing.dtracejavax.xml.crypto.dsig.docom.sun.org.apache.xmjavax.naming.eventcom.sun.imageio.streamorg.jcp.xml.dsig.internasun.security.jgss.spijavax.sound.sampled.spcom.sun.java.browser.djavax.print.eventjava.lang.annotationcom.sun.org.apache.xm

sun.reflect.generics.factjava.rmi.registrycom.oracle.netjava.security.interfacescom.sun.tracingsun.reflect.generics.scosun.net.www.protocol.hjava.rmi.dgccom.sun.jndi.url.iiopsun.tools.utilcom.sun.tools.jconsole

javax.imageio.eventcom.sun.jndi.url.dnscom.sun.net.httpserver.javax.sound.midi.spijava.security.aclcom.sun.jmx.defaultsjava.text.spisun.swing.iconsun.swing.plaf.windows
com.sun.pept.eptsun.net.www.protocol.ncom.sun.demo.jvmti.hpjava.awt.im.spicom.sun.pept.presentatsun.beans.editorssun.net.www.content.au

Key: net.java.openjdk:jdk7
Language: Java
Profile: Nemo without Findbugs (version 4)

Issues

81,984

Technical Debt

3,759.5 days

 Blocker 400

 Critical 6,324

 Major 57,425

 Minor 17,835

 Info 0

 Alerts : Duplicated lines (%) > 5.

Complexity

3.2 /function

26.2 /class

39.1 /file
Total: 294,053

 Functions Files

2012 April July October 2013 April July October 2014

Feb 04, 2012 Technical Debt: 10,697.0

Lines of code

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,00011,00012,00013,000

C
o

ve
ra

g
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=1

1 of 1 2/5/14, 11:41 PM

JDK 7

SonarQube™ technology is powered by SonarSource SA
Version 4.1.1 - Community - Documentation - Get Support - Plugins

Version 1.7-SNAPSHOT - Jan 25 2014 22:51 Time changes...

Lines of code

1,147,711
2,394,651 lines
515,283 statements
7,523 files

Classes

11,219
458 packages
91,948 functions
3,233 accessors

Documentation

64.5% docu. API
69,101 public API
24,563 undocu. API

Comments

36.2%
650,363 lines

Duplications

5.6%
133,728 lines
4,833 blocks
1,211 files

Size: Lines of code Color: Coverage 0.0% 100.0%

/

sun.nio.cs.ext

javax.swing

javax.swing.plaf.basic

java.awt

com.sun.media.sound

java.util javax.swing.text javax.swing.text.htmlsun.font com.sun.java.util.jar.packjavax.swing.plaf.synth

sun.security.ssl

sun.text.resources

java.util.concurrent

java.lang

sun.security.x509

java.awt.image

sun.security.util

javax.swing.plaf.metal

com.sun.tools.jdijava.net java.io com.sun.crypto.providersun.security.pkcs11com.sun.jndi.ldapsun.miscsun.io

java.text

sun.awt.image

sun.print

sun.tools.tree

com.sun.java.swing.plaf.window

sun.util.resources

com.sun.java.swing.plaf.gtk

sun.awt

sun.tools.jconsole

sun.nio.chcom.sun.imageio.plugins.jpegsun.tools.javajava.lang.invokesun.security.provider.certpathjava.awt.geomjava.securitycom.sun.tools.example.debug

sun.reflect

javax.management

sun.security.provider

sun.security.tools

sun.java2d.pipe

java.beans

com.sun.rowset

com.sun.java.swing.plaf.motif

sun.java2d.loops
com.sun.tools.example.debug.t

sun.text.normalizersun.tools.jconsole.inspectorcom.sun.jmx.mbeanserversun.security.krb5org.jcp.xml.dsig.internal.domsun.managementjava.awt.fontsun.management.snmp.jvm

sun.security.krb5.internal
com.sun.jmx.snmp.IPAcl
javax.management.relation
sun.swing
javax.swing.tree
javax.management.modelmb
com.sun.imageio.plugins.png
javax.crypto
sun.security.jgss.krb5
javax.management.remote.rm

java.util.regexjava.mathcom.sun.tools.example.debusun.rmi.serversun.java2dsun.tools.javaccom.sun.jmx.snmp.daemonjavax.imageio
com.sun.jmx.snmp.agent
sun.net.www.protocol.http
javax.swing.plaf.nimbus
com.sun.imageio.plugins.gif
sun.management.snmp.jvm
java.security.cert
com.sun.rowset.internal
sun.nio.cs
sun.applet
sun.net.httpserver

sun.awt.geomjavax.swing.plaf.multicom.sun.imageio.plugins.bmsun.java2d.piscesjava.util.loggingjavax.print.attribute.standardcom.sun.security.auth.moducom.sun.jmx.snmpsun.util.calendar
sun.security.tools.policytool
javax.swing.text.html.parser
java.util.zip
javax.swing.text.rtf
javax.management.openmb
com.sun.org.apache.xml.int
sun.security.pkcs11.wrapper
java.sql
sun.security.jgss
com.sun.jndi.toolkit.ctx

sun.awt.datatransfercom.sun.jndi.dnsjava.util.concurrent.lockscom.sun.org.apache.xml.insun.rmi.rmiccom.sun.security.authcom.sun.org.apache.xml.injava.awt.eventsun.security.pkcs
com.sun.tools.hat.internal.m
sun.awt.im
com.sun.imageio.plugins.c
com.sun.jmx.remote.intern
javax.management.monito
sun.security.krb5.internal.c
com.sun.tools.example.deb
sun.util.locale
sun.swing.plaf.synth
com.sun.org.apache.xml.in
sun.text.bidi

java.lang.reflectjavax.swing.colorchoosersun.java2d.openglsun.net.wwwsun.invoke.utilsun.tools.asmsun.rmi.transport.tcpjava.util.jarsun.applet.resources
sun.tools.jstat
javax.swing.table
javax.naming
com.sun.security.sasl.diges
javax.imageio.stream
java.awt.datatransfer
sun.net.www.http
sun.net
javax.sound.sampled
sun.rmi.transport

java.nio.filejava.awt.dndsun.nio.fssun.security.ecjava.beans.beancontextcom.sun.jndi.toolkit.dircom.sun.tools.hat.internaljavax.sound.midijavax.imageio.metadata
com.sun.jndi.cosnaming
javax.sql.rowset
java.awt.color
javax.security.auth
sun.tools.jar
javax.print
com.sun.jmx.interceptor
sun.swing.plaf
com.sun.jmx.remote.secur
sun.security.jgss.spnego
javax.naming.ldap

sun.security.rsajavax.net.ssljava.util.concurrent.atomicsun.net.ftp.impljavax.management.remotjava.util.prefsjavax.print.attributesun.rmi.transport.proxy
java.lang.management
sun.rmi.rmic.newrmic.jrmp
javax.security.auth.kerber
com.sun.script.javascript
sun.security.krb5.internal.
java.nio.channels
javax.sql.rowset.serial
sun.security.krb5.internal.
javax.swing.border
sun.security.jgss.wrapper
javax.imageio.spi

javax.management.loadinjava.rmi.serversun.security.pkcs12javax.naming.directoryjavax.naming.spijavax.accessibilitycom.sun.beans.decodersun.awt.dnd
com.sun.tools.hat.internal
sun.reflect.annotation
com.sun.org.apache.xml.i
com.sun.org.apache.xml.i
sun.security.smartcardio
sun.net.www.protocol.http
sun.security.validator
javax.swing.event
java.nio
sun.java2d.cmm.lcmscom.sun.jndi.toolkit.url

sun.security.jcasun.utilcom.sun.net.ssljava.security.specsun.textcom.sun.org.apache.xmljava.rmi.activationcom.sun.jdi
javax.smartcardio
sun.invoke.anon
javax.security.auth.login
sun.management.jmxremsun.jvmstat.monitorcom.sun.beans.findersun.security.provider.cersun.jvmstat.perfdata.monsun.net.idncom.sun.jmx.snmp.interncom.sun.imageio.plugins

javax.scriptjavax.swing.plafcom.sun.org.apache.xmlsun.dcsun.management.countecom.sun.jmx.remote.utilcom.sun.security.sasljavax.crypto.spec
com.sun.org.apache.xmlsun.rmi.rmic.newrmiccom.sun.naming.internalcom.sun.org.apache.xmljava.nio.file.attributejavax.management.timersun.swing.textcom.sun.security.ntlmcom.sun.beans.editorsjavax.swing.undosun.awt.util

sun.security.krb5.internajavax.xml.crypto.dsigsun.util.loggingsun.awt.shellcom.sun.net.httpserversun.rmi.logsun.reflect.miscjavax.swing.filechoosercom.sun.jndi.url.ldapjava.awt.image.renderabsun.net.www.protocol.jarcom.sun.jndi.rmi.registrysun.jvmstat.perfdata.monsun.jvmstat.perfdata.monjavax.sql.rowset.spicom.sun.security.sasl.gssun.jvmstat.perfdata.monjava.awt.printcom.sun.org.apache.xml

org.ietf.jgsssun.audiojava.nio.charsetsun.security.aclcom.sun.org.apache.xmlsun.net.www.protocol.ftpjava.rmicom.sun.jndi.ldap.pooljava.nio.channels.spisun.management.snmp.usun.security.ssl.krb5sun.instrumentcom.sun.security.auth.logsun.launchercom.sun.nio.sctpsun.jvmstat.perfdata.moncom.sun.tools.example.t

sun.net.ftpcom.sun.org.apache.xmljavax.imageio.plugins.jpecom.sun.jndi.ldap.saslcom.sun.tools.script.shelcom.sun.tools.example.dsun.rmi.runtimesun.security.timestampcom.sun.security.auth.casun.reflect.generics.reflecom.sun.net.ssl.internal.sun.management.jdpsun.tools.native2asciijava.lang.refjavax.security.sasl

com.sun.security.sasl.nsun.net.spi.nameservicesun.tracingjava.awt.peerjavax.security.auth.callbsun.net.www.protocol.gjavax.sqlcom.sun.org.apache.xmlcom.sun.security.sasl.uticom.sun.jmx.remote.protsun.tracing.dtracesun.security.internal.speccom.sun.beans.utilsun.tools.serialvercom.sun.org.apache.xml

com.sun.managementjavax.xml.cryptosun.reflect.generics.treesun.tools.jcmdcom.sun.org.apache.xmsun.tools.jmapsun.rmi.registrycom.sun.tools.hat.internsun.management.snmpcom.sun.org.apache.xmsun.java2d.pipe.hwcom.sun.beanscom.sun.tools.attachsun.net.utilcom.sun.script.utilcom.sun.rmi.rmid

com.sun.tools.hat.interncom.sun.org.apache.xmsun.net.smtpcom.sun.jdi.requestcom.sun.org.apache.xmsun.tools.jpscom.sun.jndi.ldap.extsun.java2d.cmmjavax.rmi.sslcom.sun.imageio.spisun.net.spijavax.xml.crypto.dsig.spsun.tools.jstatdjava.nio.file.spijava.appletjavax.security.auth.x500

sun.reflect.generics.repjavax.xml.crypto.dsig.kecom.sun.awtjavax.security.certcom.sun.tools.hatsun.net.www.protocol.filsun.tools.jstackcom.sun.jmx.snmp.tasksun.swing.tablesun.management.countcom.sun.org.apache.xmsun.tools.jinfocom.sun.security.cert.incom.sun.jmx.snmp.defacom.sun.jdi.event

sun.reflect.generics.visisun.net.www.protocol.hsun.security.krb5.internacom.sun.jndi.toolkit.corbcom.sun.java.swingjavax.xml.crypto.domsun.security.actionsun.security.krb5.interncom.sun.jndi.url.rmijava.awt.imcom.sun.rowset.providesun.net.www.protocol.mcom.sun.jdi.connectjavax.netsun.net.www.content.im

sun.misc.resourcescom.sun.tracing.dtracejavax.xml.crypto.dsig.docom.sun.org.apache.xmjavax.naming.eventcom.sun.imageio.streamorg.jcp.xml.dsig.internasun.security.jgss.spijavax.sound.sampled.spcom.sun.java.browser.djavax.print.eventjava.lang.annotationcom.sun.org.apache.xm

sun.reflect.generics.factjava.rmi.registrycom.oracle.netjava.security.interfacescom.sun.tracingsun.reflect.generics.scosun.net.www.protocol.hjava.rmi.dgccom.sun.jndi.url.iiopsun.tools.utilcom.sun.tools.jconsole

javax.imageio.eventcom.sun.jndi.url.dnscom.sun.net.httpserver.javax.sound.midi.spijava.security.aclcom.sun.jmx.defaultsjava.text.spisun.swing.iconsun.swing.plaf.windows
com.sun.pept.eptsun.net.www.protocol.ncom.sun.demo.jvmti.hpjava.awt.im.spicom.sun.pept.presentatsun.beans.editorssun.net.www.content.au

Key: net.java.openjdk:jdk7
Language: Java
Profile: Nemo without Findbugs (version 4)

Issues

81,984

Technical Debt

3,759.5 days

 Blocker 400

 Critical 6,324

 Major 57,425

 Minor 17,835

 Info 0

 Alerts : Duplicated lines (%) > 5.

Complexity

3.2 /function

26.2 /class

39.1 /file
Total: 294,053

 Functions Files

2012 April July October 2013 April July October 2014

Feb 04, 2012 Technical Debt: 10,697.0

Lines of code

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,00011,00012,00013,000

C
o

ve
ra

g
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SonarQube - JDK 7 http://nemo.sonarqube.org/dashboard/index/371518?did=1

1 of 1 2/5/14, 11:41 PM

http://www.sonarqube.org/

Code Climate

http://codeclimate.com/

Summary

Avoid Technical Debts

Questions?

