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Test Development Process

Test Development Process covers 
● Test Analysis
● Test Design
● Test Implementation
● Test Execution
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Test specification
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Test Development Process
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Test Development Process
Test Analysis

● Analysis of test basis documentation
 What to test? 
 What are the test conditions*?

● Requested: Bidirectional traceability between
Specifications and  Test conditions 
requirements 

– for impact analysis when requirements change, 

– to determine requirements coverage for a set of 
tests.

* Test condition = An item or event of a component or system that could be verified by one or more test 
cases, e. g. a function, transaction, feature, quality attribute, or structural element [ISTQB-GWP12].
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Test Development Process
Test design

Creation / Specification of test cases and test data
● A test case consists of a set of 

– input values, 
– execution preconditions, 
– expected results, and 
– execution postconditions
to cover a certain test objective(s) or test condition(s).

– Description of expected results should include outputs, 
changes to data and states, any other consequences of the test.

– If expected results are not defined, then a plausible, but 
erroneous, result may be interpreted as the correct one.

– Expected results should ideally be defined before tests get 
executed.
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Test Development Process
Test design

Out of ‘Standard for Software Test Documentation’ 
[IEEE STD 829-1998]

● Test design specification [ISTQB-GWP12] 
Document that specifies the test conditions 
(coverage items) for a test item, the detailed test approach 
and the associated high level test cases. 
A test plan could content several test design 
specifications.

● Test case specification [ISTQB-GWP12] 
Document that specifies a set of test cases (objective, 
inputs, test actions, expected results and execution pre 
conditions) for a test item. A test design specification could 
content several test case specifications.
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Test Development Process
Test implementation 

During test implementation test cases are
– developed, 

– implemented, 

– prioritized, and 

– organized in the test procedure specification.
● Test procedure specification [ISTQB-GWP12] 

Document that specifies a sequence of actions for the 
execution of a test (test script or manual test scripts).
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Test Development Process
Test execution

● Test execution schedule
– contents and defines the execution order of

● test procedures
… specifies the sequence of actions for a test execution.

● automated test procedures (automated test scripts)
… if a test automation tool is used, contents sequence of 
actions.

– takes into account factors like
● regression tests, 
● prioritization, 
● technical dependencies,
● logical dependencies.
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Test Design Techniques

● Purpose of a test design technique is to identify
– test conditions, 

– test cases, and 

– test data.
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Test Design Techniques

● White-box test design techniques (also called 
structural or structure-based techniques)
– based on an analysis of the structure of the 

component or system.

– uses any information regarding the internal 
structure of the component or system to be tested
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Test Design Techniques

● Black-box test design techniques (also called 
specification-based techniques) 
– based on an analysis of the test basis 

documentation,

– include both functional and non-functional testing.

– does not use any information regarding 
the internal structure of the 
component or system to be tested
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Test Design Techniques

● Grey-box test design techniques [Wik14]
– based partly on internals of a software, involves 

knowledge of internal data structures and algorithms 
for purposes of designing tests, 

– execute defined tests at the user, or black-box level.

– uses some information about the inside, 
to better test from the outside.

– is important with web applications 
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Test Design Techniques

Specification-based test design techniques
● Models, either formal or informal, are used for

– the specification of the problem to be solved,

– the software, or 

– the software components.

● Test cases can be derived systematically from 
these models
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Test Design Techniques

Structure-based test design techniques
● Information about how the software is 

constructed is used to derive the test cases 
(e.g., code and detailed design information).

● The extent of coverage of the software can be 
measured for existing test cases, and further 
test cases can be derived systematically to 
increase coverage.
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Test Design Techniques

Experience-based test design techniques
● Test cases are derived based on the knowledge 

and experience of testes, developers, users 
and other stakeholders about
– the software, 

– its usage,

– its environment,

– likely defects and their distribution.
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Test Design Techniques

Combination of Test Design Techniques
● Black-box and white-box testing may also be 

combined with experience-based techniques to 
effectively use the experience of developers, 
testers and users.
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● White-box testing is based on an identified 
structure of the software or the system:
– Component level: The structure of a software component, 

as for example
● statements,  branches,
● decisions,  distinct paths.

– Integration level: The structure may be a call tree 
(a diagram in which modules call other modules).

– System level: The structure may be a 
● menu structure,  web page structure,
● business process.

White-box Techniques
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White-box Techniques
Structural Coverages

Structural Coverage
● based on control flow analysis,
● gives no advice concerning test case creation,
● good starting point for thorough testing.

Other criteria for designing tests should be 
included in an effective testing strategy, based on
● data flow, and
● required functionality.
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White-box Techniques
Structural Coverages

Structural Coverage Metrics cover
● Statement testing
● Decision testing

Hint: Some sources mention that Decision testing is same like 
Branch testing, but ISTQB syllabus differs [ISTQB-GWP12]: 

– Branch coverage: The percentage of branches that have been 
exercised by a test suite. 100% branch coverage implies both 
100% decision coverage and 100% statement coverage.

– Decision coverage (related to branch testing): The percentage of 
decision outcomes that have been exercised by a test suite. 
100% decision coverage implies both 100% branch coverage and 
100% statement coverage.
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White-box Techniques
Structural Coverages

More Structural Coverage Metrics are
● Condition testing

● Multiple condition testing

● Condition determination testing

● Linear Code Sequence and Jump (LCSAJ) or loop 
testing

● Path testing

● API* testing

See e.g. [ISTQB-CTALSTTA12] for details
* API (Application Programming Interface)
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White-box Techniques
Statement Testing and Coverage
● Statement coverage

– done in component testing.

– assessment of the percentage of executable 
statements that have been covered by a test case 
suite.

– Goals:
● Execution of all statements of a program at least once.
● Ensuring there is no unreachable code (“dead code”).
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White-box Techniques
Statement Testing and Coverage
● Statement coverage is determined by 

– testedStatements = number of executable 
statements covered by 
(designed or executed) 
test cases.

– allStatements = number of all executable 
statements in the code under test.

testedStatements
allStatements
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White-box Techniques
Statement Testing and Coverage
● Example 1

2 Test Cases for
100 % Statement 
Coverage
– A, B, F

– A, C, D, E, F

A

B C

E

D

F
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White-box Techniques
Statement Testing and Coverage
● Example 2

1 Test Case for 
100 % Statement 
Coverage

TC1: x = 1, y =2
Result: z = 3

/* z is greater value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

    z = z +1;
return z;

}
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White-box Techniques
Decision Testing and Coverage

● Decision coverage, related to branch testing, is 
the assessment of the percentage of decision 
outcomes (e.g., the True and False options of 
an IF statement) that have been exercised by a 
test case suite. 

● The decision testing technique derives test 
cases to execute specific decision outcomes.

● Branches originate from decision points in the 
code and show the transfer of control to 
different locations in the code.
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White-box Techniques
Decision Testing and Coverage

● Decision coverage is determined by 

– testedDecisions = number of all decision outcomes 
covered by (designed or 
executed) test cases 

– allDecisions = number of all possible decision 
outcomes in the code under test.

● Decision testing is a form of control flow testing 
as it follows a specific flow of control through 
the decision points. 

testedDecisions
allDecisions
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White-box Techniques
Decision Testing and Coverage

● Example 1
4 Test Cases for
100 % Decision 
Coverage
– A, B, F

– A, C, F

– A, C, D, F

– A, C, D, E, F

A

B C

E

D

F
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White-box Techniques
Decision Testing and Coverage

● Example 2
2 Test Cases for 
100 % Decision 
Coverage

TC1: x = 1, y =2
Result: z = 3

TC2: x = 3, y = 2
Result: z = 4

/* z is greater value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

    z = z +1;
return z;

}
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White-box Techniques
Statement Coverage / Decision Coverage

● Decision coverage is stronger than statement 
coverage:
– 100% decision coverage guarantees 

100% statement coverage, 

– but not vice versa.
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● Means 
50 % Decision coverage 
also 
50% Statement coverage?
==> No!

● TC1: x=3
50 % Decision coverage
75 % Statement coverage

● TC2: x=2
50 % Decision coverage
50 % Statement coverage

White-box Techniques
Statement Coverage / Decision Coverage

Code example

int foo(int x) {
int a = 0;
if (x>2) {

a = a+1;
a = a+1;

} else
    a = a+1;
}

[Büc10]
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White-box Techniques
Statement Coverage / Decision Coverage

Assessment
● Both statement and decision coverage are 

weak criteria. 
● “Statement-coverage criterion is so weak that it 

is generally considered useless.” [p. 37 Mye04] 
● Statement coverage and decision coverage 

should be considered as a minimal 
requirement.
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White-box Techniques
Other Structure-based Techniques

● There are stronger levels of structural coverage 
beyond decision coverage, for example,
– Condition coverage and 

– Multiple condition coverage.

● The concept of coverage can also be applied at 
other test levels. 

● For example, at the integration level the 
percentage of modules, components or classes 
that have been exercised by a test case suite 
could be expressed as module, component or 
class coverage.
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White-box Techniques
Structural Coverages

Challenges [Büc10]
● Different metrics definitions around.
● Sometimes you can't achieve 100 % coverage.
● Coverage metrics have different names (e.g. 

Abbreviations have different meanings, like C0 
or C1 for statement coverage).

● Not always clear, how coverages were 
measured (important when using tools).

● Kind of coding influences results of coverage 
analysis.
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White-box Techniques
Structural Coverages

Hints [Büc10]
● Clarify, that you talk about the same structural 

coverage definitions.
● Clarify in using coverage measuring tools, how 

these work.
● Don't be relaxed because of 100% code 

coverage.
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White-box Techniques
Cyclomatic Complexity

● Complexity
The degree to which a component or system 
has a design and / or internal structure that is 
difficult to understand, maintain and verify.

● The more complex a component or a system is, 
the higher the probability that
– test coverage is not complete,

– defects occur,

– maintenance gets more difficult.
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity metric 
– could be used to measure the complexity of a 

module's decision structure. 

– is the number of linearly independent paths and 
therefore, the minimum number of paths that should 
be tested. 
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]: 
The number of independent paths through a 
program. Cyclomatic complexity M is defined 
as: 

M = L – N + 2P, where
– L = number of edges/links in a graph

– N = number of nodes in a graph

– P = number of disconnected parts of the graph 
(e.g. a called graph or subroutine)
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White-box Techniques
Cyclomatic Complexity

Example:

M = L – N + 2P

= 8 – 7 + 2

= 3
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White-box Techniques
Cyclomatic Complexity

Example:

M = L – N + 2P

= 8 – 7 + 2

= 3

A

B C

E

D

F

G
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]: 
Alternative calculation, if you have a program 
with binary conditions only:

M = b + 1, where 
 b = number of binary conditions
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B

C D

J

A

White-box Techniques
Cyclomatic Complexity

Example:

M = b + 1

= 5 + 1 

= 6

E F G H I

K
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White-box Techniques
Cyclomatic Complexity

Cyclomatic Complexity M 
● M is the upper bound for the number of test 

cases for decision coverage. 
● M > 10 should be prevented (following 

McCabe).
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White-box Techniques
Cyclomatic Complexity

● The higher M, the higher the probability of 
errors
– Studies of Sharpe [Sha08] have shown

● M = 11 had lowest probability of 28% of being fault-prone.
● M = 38 had a probability of 50% of being fault-prone.
● M ≥ 74 had 98 % plus probability of being fault-prone.

– Walsh collected data of 276 modules [McC96, 
Wal79]:
≈ 50 % had M < 10 with 4,6/100 statements error rate.

≈ 50 % had M ≥ 10 with 5,6/100 statements error rate.
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White-box Techniques
Cyclomatic Complexity

● Weakness
– Assumption that faults are proportional to decision 

complexity does not consider processing complexity 
and database structure.

– It does not differ between different kinds of decisions, 
which is counter intuitive

● An "IF-THEN-ELSE" statement is treated the same as a 
relatively complicated loop.

● Also CASE statements are treated the same as nested IF 
statements.

– It's possible that a program gets a high value for M, 
but is easy understandable (see example next page).
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White-box Techniques
Cyclomatic Complexity

Example:
const String monthsName (const int nummer) {
  switch(nummer)  {
 case 1: return "January";
 case 2: return "February";
 case 3: return "Mars";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
  }
  return "unknown month number";
}

Program has a high 
cyclomatic complexity 
M = 13.

But it is easy to  
understand.
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