
Unit Testing
and

Test-Driven
Development

Unit Testing

What’s Unit Testing

Unit testing is a method by which
individual units of source code, sets of
one or more computer program modules
together with associated control data,
usage procedures, and operating
procedures are tested to determine if
they are fit for use.

Unit Testing

5 Benefits

1. Find Problems Early

2. Facilitates Changes

3. Simplifies Integration

4. Documentation

5. Design

Separation of interface from implementation

Separation of interface from implementation
is when you’re doing a unit test but some classes
may have references to others classes or some
class that depend on database.

This is a mistake! because a unit test should
usually not go outside of its own class boundary.

Crossing own unit boundaries turns unit test
into integration test.

How to avoid
Separation
of interface

from
implementation

Create
MOCK OBJECT

or
FAKE !!

Unit test & Extreme
Programming(XP)

Unit test & Extreme Programming(XP)

Unit testing is a cornerstone of extreme
programming , which relies on an
automated unit testing framework.

Limitations

● Testing will not catch every error in the
program.

● it will not catch integration errors or
broader system-level errors.

● This obviously takes time and its
investment may not be worth the
effort.

Tools

Java
● JUnit Test
● TestNG

Looking for other languages ?
http://en.wikipedia.
org/wiki/List_of_unit_testing_frameworks#Java

Example

Simple Calculator

Test-Driven
Development

What’s TDD ?

Test-Driven Development (TDD)
is a software development process
that relies on the repetition of a very
short development cycle.

What’s TDD ?

Test-Driven Development is related to
the test-first programming concepts
of extreme programming.

TDD Cycle

TDD Cycle

Red Add a test and run, if the test fails
 go to green.

Green Write production code and run all
tests
If all tests succeed, go to refactor.

Refactor Optimize, Clean up code
Repeat Repeat all steps with new tests.

3 Rules of TDD

1. Do not write any production code unless it
is to make a failing unit test pass.

2. Do not write any more of unit test than is
sufficient to fail; and compilation failures
are failures.

3. Do not write any more production code
than is sufficient to pass the one failing unit
test.

Benefits

● Better understanding of what you're
going to write.

● More modularized, flexible and
extensible

● Enforces the policy of writing tests
better.

Limitations

In situations where automated unit tests
are not applicable, TDD obviously does
not apply.
Test written is time consuming.
TDD is highly reliant on refactoring and
programmer skills

Example

Guessing Game

How to play ?
● You can guess only 7 times !
● The secret number have 4 digits (with no

repeated digits)
● “A” means you have guess the right digits and

the right position
● “B” means you have guess the right digits but

the position is wrong

Guessing Game

Example
● Secret number is “0314”
● You guess a number “0438”
● Result -> A : 1, B : 2

○ In your guess number have 1 digit that contains in
the secret number and it’s in the right place (“0”)

○ In your guess number have 2 digits that contains
in the secret number but place in the wrong
position (“4” and “3”)

Quiz & Exercise
/\ /\

\(OwO!!)/

Any Questions ?

