
IT Quality and Software Test

Lesson 11
Test Tools

Quiz
V1.1

Uwe Gühl

Winter 2013 / 2014



Winter 2013 / 2014 Uwe Gühl - Software Testing 11 2

1. Test Tools
Overview

A tool that supports traceability, 
recording of incidents, or scheduling of tests is called:

a) a dynamic analysis tool

b) a test execution tool

c) a debugging tool

d) a test management tool

e) a configuration management tool

http://www.istqbsamplepaper.n18.in



Winter 2013 / 2014 Uwe Gühl - Software Testing 11 3

1. Test Tools
Overview

A tool that supports traceability, 
recording of incidents, or scheduling of tests is called:

a) a dynamic analysis tool

b) a test execution tool

c) a debugging tool

d) a test management tool

e) a configuration management tool

http://www.istqbsamplepaper.n18.in





Winter 2013 / 2014 Uwe Gühl - Software Testing 11 4

2. Test Tools
Test management tools

Below you find a list of improvement goals a software 
development and test organisation would like to achieve.

Which of these goals for improving the efficiency of test 
activities would best be supported by a test management tool?

a) Improve the efficiency by building traceability between 
requirements.

b) Improve the efficiency by optimizing the ability of tests to 
identify failures.

c) Improve the efficiency by faster resolving defects.

d) Improve the efficiency by automating the selection of test 
cases for execution.

http://www.istqb.org



Winter 2013 / 2014 Uwe Gühl - Software Testing 11 5

2. Test Tools
Test management tools

Below you find a list of improvement goals a software 
development and test organisation would like to achieve.

Which of these goals for improving the efficiency of test 
activities would best be supported by a test management tool?

a) Improve the efficiency by building traceability between 
requirements.

b) Improve the efficiency by optimizing the ability of tests to 
identify failures.

c) Improve the efficiency by faster resolving defects.

d) Improve the efficiency by automating the selection of test 
cases for execution.

http://www.istqb.org





Winter 2013 / 2014 Uwe Gühl - Software Testing 11 6

3. Test Tools
Test execution tools

Which one of the following characteristics of test execution 
tools describes BEST a specific characteristic of a keyword-
driven test execution tool?

a) Actions of testers will be recorded in a script that can be 
rerun several times.

b) Actions of testers will be recorded in a script that is then 
being generalized to run with several sets of test input 
data.

c) The ability to log test results and compare them against 
the expected results.

d) A table containing test input data, action words, and 
expected results controls the execution of the system 
under test. http://www.istqb.org



Winter 2013 / 2014 Uwe Gühl - Software Testing 11 7

3. Test Tools
Test execution tools

Which one of the following characteristics of test execution 
tools describes BEST a specific characteristic of a keyword-
driven test execution tool?

a) Actions of testers will be recorded in a script that can be 
rerun several times.

b) Actions of testers will be recorded in a script that is then 
being generalized to run with several sets of test input 
data.

c) The ability to log test results and compare them against 
the expected results.

d) A table containing test input data, action words, and 
expected results controls the execution of the system 
under test. http://www.istqb.org





Winter 2013 / 2014 Uwe Gühl - Software Testing 11 8

4. Test Tools
Introducing a tool

When a new testing tool is purchased, it should be used first 
by

a) a small team to establish the best way to use the tool

b) everyone who may eventually have some use for the tool

c) the independent testing team

d) the vendor contractor to write the initial scripts

http://www.ajoysingha.info



Winter 2013 / 2014 Uwe Gühl - Software Testing 11 9

4. Test Tools
Introducing a tool

When a new testing tool is purchased, it should be used first 
by

a) a small team to establish the best way to use the tool

b) everyone who may eventually have some use for the tool

c) the independent testing team

d) the vendor contractor to write the initial scripts



http://www.ajoysingha.info



Winter 2013 / 2014 Uwe Gühl - Software Testing 10 10

1 Task
Unit Testing (1/2)

● A system was designed to calculate the fine in case of 
speeding. Speeding 1-15 mph over 65 mph results in a fine of 
$146. Additionally:

– Speeding 16-25 mph over 65 mph $266 fine.

– Speeding more than 25 mph over 65 mph $380 fine.

1. How many test cases should be written? Please explain your 
answer.

2. Two JUnit test cases have been written already (following 
page), please add another one in detail.

3. What could be extracted into an “@Before“ Statement?



Winter 2013 / 2014 Uwe Gühl - Software Testing 10 11

1 Task
Unit Testing (2/2)

package speedingFine;
import static org.junit.Assert.*;
import org.junit.Test;

public class SpeedingFineTest {

 @Test
public void testNoFine() {
SpeedingFine sf = new SpeedingFine();

 assertTrue("Fine no speeding: ", "$0" == sf.getFine(0));
}

 @Test
public void testLowSpeedingLowerBound() {
SpeedingFine sf = new SpeedingFine();

 assertEquals("Fine low speeding lower bound: ", "$146", 
sf.getFine(1));
}

}



Winter 2013 / 2014 Uwe Gühl - Software Testing 10 12

1 Proposal
Unit Testing (1/3)

1. 4 test cases following equivalence classes. 
6 test cases following Boundary Value analysis.

2. Following test cases could be added:

 @Test
public void testLowSpeedingUpperBound() {

SpeedingFine sf = new SpeedingFine();
assertEquals("Fine low speeding upper bound: ", "$146", 

sf.getFine(15));
}

@Test
public void testMediumSpeedingLowerBound() {

SpeedingFine sf = new SpeedingFine();
assertEquals("Fine medium speeding lower bound: ", "$266", 

sf.getFine(16));
}



Winter 2013 / 2014 Uwe Gühl - Software Testing 10 13

1 Proposal
Unit Testing (2/3)

@Test
public void testMediumSpeedingUpperBound() {

SpeedingFine sf = new SpeedingFine();
assertEquals("Fine medium speeding upper bound: ", "$266", 

sf.getFine(25));
}

@Test
public void testHighSpeeding() {

SpeedingFine sf = new SpeedingFine();
assertEquals("Fine medium speeding: ", "$380", 

sf.getFine(26));
}



Winter 2013 / 2014 Uwe Gühl - Software Testing 10 14

1 Proposal
Unit Testing (3/3)

3. The statement
speedingFine sf = new SpeedingFine();

in each test case could be moved into an 
@Before statement

 
private SpeedingFine sf;

@Before
public void setup() throws Exception {

sf = new SpeedingFine();
}


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

