
Lesson 01
Software Development Processes

v1.1

Uwe Gühl

Fall 2007/ 2008

Software Engineering

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 2

Contents
● Software Development Process
● Classical Process Models for Software Engineering (SE)

– Structured Analysis / Structured Design (SA/SD)
– Data oriented Software Development

● Object Oriented Process Models for
Object Oriented Software Engineering (OOSE)
– Rational Unified Process (RUP)
– Object Engineering Process (OEP)

● Agile Approaches
– Extreme Programming (XP)

● More Process Models / Outlook
● Software Development Process Improvements (CMMI)
● Summary

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 3

Software Development Process
History of Abstraction

Abstraction from …
Voltage and electricity
Command and Date
Several bits:
Command codes
Memory addresses
Machine operations
Calculation rules and data
Command sequences
special operations
Different characteristics
Data implementation
Type implementation
Similar operations
Similar types

... to …
Programming language
von-Neumann-Machine
Octal- and hexadecimal code
Operator symbols
Identifier
Expressions
Functions
Procedures
Function / procedure parameter
Generic units
Encapsulation
Abstract data types (ADT)
Overloading
Inheritance

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 4

Software Development Process
Thoughts

● Methods: How to do or make something?
A series of steps taken to build software

● Processes: How to proceed? Requirements-
Management, Architecture-driven, Test-driven

● Rules, Constraints: Programming guidelines,
document guidelines, modelling language, ...

● IT-Project Management
– Organization, Planning, Control, Reviews,

Communication, Culture

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 5

Software Development Process
What is it?

● Structuring of Development into processes and
activities

● Activities have defined
– Inputs:

● Events
● Documents
● Time

AI O

R

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 6

Software Development Process
What is it?

● Activities have defined
– Outputs (Results):

● Documents
● Milestones
● Trigger for other activities

AI O

R

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 7

Software Development Process
What is it?

● Roles are definitions of
responsibilities, competences,
and capabilities
(e. g. system architect)
– Assigning activities to roles
– Assigning persons to roles

AI O

R

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 8

Software Development Process
Contents

Analysis Design Imple-
mentation Test

Documentation

Maintenance

Project management

Learning experience

Change
management

Requirements
management

Communication
Risk

management
Project
culture

Configuration
management

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 9

Software Development Process
Contents

Analysis Design Imple-
mentation Test

Documentation

Maintenance

Project management

Learning experience

Change
management

Requirements
management

Communication
Risk

management
Project
culture

Configuration
management● Classical activities

– Analysis: Understand, structure and evaluate
requirements

– Design: Find and describe solution

– Implementation: Realization of solution
– Test: Verify
– Maintenance: Operation and further development

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 10

Software Development Process
Contents

Analysis Design Imple-
mentation Test

Documentation

Maintenance

Project management

Learning experience

Change
management

Requirements
management

Communication
Risk

management
Project
culture

Configuration
management

– Project management: Plan and control
– Communication: Communication model
– Risk management: Collect and evaluate risks
– Project culture: Project rules
– Requirements management: Collect, evaluate, and

trigger requirements
– Change management: Deal with changes

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 11

Software Development Process
Contents

Analysis Design Imple-
mentation Test

Documentation

Maintenance

Project management

Learning experience

Change
management

Requirements
management

Communication
Risk

management
Project
culture

Configuration
management

– Configuration management
● Tracking and managing of changes of all artefacts in the

project (Sources, Requirements, Documentation, ...)
● To be able to answer questions like

– Which requirement was valid when?
– Which requirement was realized in which release?
– When was a specific requirement new, changed, realized?

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 12

Software Development Process
Contents

Analysis Design Imple-
mentation Test

Documentation

Maintenance

Project management

Learning experience

Change
management

Requirements
management

Communication
Risk

management
Project
culture

Configuration
management– Documentation: All important project and product

documents, important e.g. for operation
– Learning experience: Learning curve, team

performance

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 13

Software Development Process
Changes

● Paradigm shift
– Stages not separated strictly, but flowing
– Iterative and incremental approach
– Concept of Round trip Engineering

● Focus is moving from applications and
application organization to data modelling and
the interacting with data

● Reason: Different life cycles [Hel94, p. 180]
– Hardware: 2 to 4 years
– Applications: 3 to 6 years
– Models: 1 to 30 years

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 14

Software Development Process
Why not try without?

● Why should we use a Software Development
Process?

● Even today there are projects without a
software developments process

● After clarification of requirements (more or less)
one programs, tests, corrects until the software
has an acceptable status.

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 15

Software Development Process
Why not try without?

● Pros
– No „Overhead“ for design, documentation, no following to

standards, ...
– No previous knowledge necessary

● Cons
– No possibility to get the current status
– Difficult to control
– Problems with maintainability and enhancement highly probable

● So
– Only a (possible) idea for small short projects, e. g. Throwaway-

prototypes, „Proof-of-Concept“-Demonstrations, etc.

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 16

Software Development Process
Why?

• Why models?
A good model should answer questions to a
system without using it

• But: Models are always wrong - some are useful
• Idea: Good process good product

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 17

Software Development Process
Why?

● Software Development Processes and you
– Let's hear from your experience
– Group discussion (3 to 4 people in one group)

● Have you ever done software development?
● What was your part / your role?
● Was there a process, did you like it?
● What were you experiences?
● What was the craziest, funniest, most stupid thing what

happened during the software development ?
– Results to the class

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 18

Classical Process Models
History - On the way

● Reason: Software Crisis End of 1960s / Begin
of 1970s
– Software could not keep up with increasing

performance characteristics of the hardware
– Software got more and more complex, fault-prone

and unmanageable with more and more
requirements and enlargements

– Software got more expansive because of high
manual programming effort (low automation, no
software reusability)

● Goal: From non coordinated non structured
program development to Software Engineering!

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 19

Classical Process Models
SA / SD

● Structured Analysis (SA)
– From DeMarco, McMenamin und Palmer [DeM78]
– Collects requirements for implementation
– Modelling: Structured Analysis Design Technique

(SADT)
– Contents: Flow charts, data dictionary, process

specification
– Dynamic modeling with sequence diagrams and

Petri Nets – enhancement to SA/RT (SA for
Realtime Systems)

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 20

Classical Process Models
SA / SD

● Structured Design (SD)
– Planning of implementation
– Stage between analysis and implementation
– Analysis of underlying data
– Development of conceptional data models in

structure diagrams

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 21

Classical Process Models
SA / SD

● Process Model: Waterfall model [Roy70]

PLAN

CODE

COMPONENT
TEST

SYSTEM
TEST

FIELD
SUPPORT

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 22

Classical Process Models
SA / SD

● Critics
– Brooks: Waterfall model is wrong [FPB95, pp. 264]
– One way from analysis to design too ideal and

inflexible
– Problems detected later lead to local fixes without

considerable common changes
– Difficult to handle
– Not clear
– Gap between analysis and design model
– Good for small well arranged projects

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 23

Classical Process Models
Data oriented approach

● The data oriented approach is standard practice
in database applications
– Used data are in the centre
– Less important: Procedural techniques how to work

with the data
● More areas of the data oriented approach in

software development
– Conversion processors
– EDM-Systems (EDM = Engineering Data

Management)
– Integration architecture (discuss SOA)

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 24

Classical Process Models
Data oriented approach

Proposal of a 3-Level-Architecture for Databases of ANSI-SPARC
(American National Standards Institute -

Standard Planning and Requirement Committee)

External
level

Conceptual
level

Internal
level

Multiple user's and
applications view

on data

Application
independent logical

general data
structure

Description of
technical realization

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 25

Classical Process Models
Data oriented approach

● Modelling with Entity-Relationship-Model (ERM)
from Chen [Che76]

● Basic elements
– Entities as objects of the real world
– Relationships between entities

Two related entities

student participates course
registration

number

Primary key

student

Nick name

Entity with attribute

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 26

Classical Process Models
Data oriented approach

● Comments
– Semantic of Entity-Relationship-Models is not

sufficient for complex application
● Dynamic behaviour could not be shown

– Further development to EER-Model (Extended
Entity-Relationship-Model) with

● Parent classes and child classes
● Inheritance hierarchies

– Development of object oriented and object
relational data bases

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 27

Object Oriented Process Models
UML

● In the 1980s:
– From process orientation to object orientation
– From waterfall model to iterative incremental

approach
● From the beginning of the 1990s

– Ideas to formalize object oriented analysis (OOA)
and object oriented design (OOD)

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 28

Object Oriented Process Models
UML

● Object oriented Design (OOD) by Booch
– Focus: Commercial applications

● Object Modeling Technique (OMT) by
Rumbaugh
– Referring to structured methods

● Object-Oriented Software-Engineering (OOSE)
by Jacobson

● Object Oriented Analysis (OOA) by Coad,
Yourdon

● Rumbaugh and Booch started to work together,
supported by Jacobson later „3 Amigos“

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 29

Object Oriented Process Models
UML

● Lead managed by the “Rational” company the
„3 Amigos“ developed together the Unified
Modeling Language (UML):
– Graphical language to describe object oriented

models
– Unified notation - UML could be used as one

language for the analysis as well for the design of
object oriented systems

– Standardization by OMG (www.omg.org)
– No Method, but could be fundament for methods

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 30

Object Oriented Process Models
1990

1995

1997

2000

SOMA
Graham

MOSES
Henderson-Sellers

Fusion
Coleman

OOA
Coad/Yourdon

OOSA
Shlaer/Mellor

Team Fusion
Coleman a. o.

OPEN/OML
Open-Group

Booch
Booch

OMT
Rumbaugh u.a.

OOSE
Jacobsen

UM 0.8
Booch/Rumbaugh

UML 0.9
„3 Amigos“

UML 1.1
Unified
Process

UML 1.3

2003
Crystal

Cockburn XP
Beck u.a.

Agile Modeling
Beck a. o.

Scrum
Schwaber

compare [Oes06]

UML 2.0

UML 1.5

2005

UML 2.12006

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 31

Object Oriented Process Models

● Rational Unified Process (RUP)
● Object Engineering Process (OEP) [Oes06]
● The German Government Process Model

(German: “V-Modell”)
– Standard for the software development at the

German Federal Armed Forces
● In-house process models

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 32

Object Oriented Process Models
RUP

● The Rational Unified Process (RUP)
– was created by Jacobson, Booch and Rumbaugh in

1999
– is based on the UML
– is an incremental and iterative software

development process
– is based on

● Phases – where one or more iterations take place
● Iterations – during the iterations the different quantified

activities in the subprocesses take place
● Processes - Subprocesses are assigned to workflows

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 33

Object Oriented Process Models
RUP

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 34

Object Oriented Process Models
RUP

● Six core workflows
– Business Modelling Workflow
– Requirement Workflow
– Analysis & Design Workflow
– Implementation Workflow
– Test Workflow
– Deployment Workflow

● Three supporting workflows
– Project Management Workflow
– Configuration and Change Management Workflow
– Environment Workflow

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 35

Object Oriented Process Models
RUP

● Architectural Views
Logical View
[End User]

●Functionality
●Usability Use Case View

[Analyser / Tester]
●Functionality

Implementation View
[Implementor]

●Software Management

Distribution View
[System Architect]

●Installation
●Communication

Process View
[System Integrator]

●Performance
●Scalability

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 36

Object Oriented Process Models
RUP

● Phases
– Inception (Concept phase)

● Define scope of project
– Elaboration (Design phase)

● Planning of project
● Define functionality and architecture

– Construction
● Implementation of product
● Enhancement of functionality

– Transition
● Product delivery

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 37

Object Oriented Process Models
RUP

● Phases

Inception Elaboration Construction Transition
Effort
Time

~ 5%
10%

20%
20%-40%

65%
40%-50%

10%
10%

Table 1: Characteristic proportions of the phases

Complex project

Typical project
Short project

Risky project
 9 Iterations (1 I, 3 E, 3 C, 2 T)
 6 Iterations (1 I, 2 E, 2 C, 1 T)
 3 Iterations (0 I, 1 E, 1 C, 1 T)

10 Iterations (2 I, 3 E, 3 C, 2 T)

Table 2: Characteristic values for iterations per phase
depending on kind and size of projects

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 38

Object Oriented Process Models
RUP

● Inception Phase
– Small team (up to 6 people) – high qualified
– Milestones

● Planning of Responsibilities, rough planes for each phase
● Baseline vision and requirements
● Architecture models

– Evaluation
● Agreement of all project members
● Go / No go Decision

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 39

Object Oriented Process Models
RUP

● Elaboration Phase
– Small team (up to 10 people)
– Milestones

● Planning of Construction Phase
● Stable requirements
● Stable design model

– Evaluation
● Product vision and architecture are stable
● Don'ts: Analysis Paralysis

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 40

Object Oriented Process Models
RUP

● Construction Phase
– Maximum number of people
– Release every 2 to 3 months up to 6 to 9 months

depending on project size
– Milestones

● Stable implementation with critical features in transparent
quality

– Evaluation
● Quality of releases

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 41

Object Oriented Process Models
RUP

● Transition Phase
– Small team, support, trainer
– Milestones

● User documentation
● Stable delivery with all features in highest quality

– Evaluation
● Acceptance of customer
● Real project costs to predicted project costs

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 42

Object Oriented Process Models
RUP

● Artifacts get
finished until
the end of
the project

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 43

Object Oriented Process Models
RUP

● Subprocess
„Analysis
and
Design“

Workflow

End of workflow in
the subprocess

Start of
subprocess

„Analysis and
Design“

Activity limited to a
specific phase

„control flow“

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 44

Object Oriented Process Models
RUP

● Basic
elements of
Workflow

Role

Work
results

(„Artifact“)

Tools for
artifacts

Tools
for activities

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 45

Object Oriented Process Models
RUP

● Workflow
„Design
Components“

Dependent
Workflow /
Follow-up-
Workflow

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 46

Object Oriented Process Models
RUP

● Activity
„Subsystem
Design“

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 47

Object Oriented Process Models
RUP

● People and Roles
– Examples for roles in the Rational Unified Process:
– Analysts (Business-Process Analyst, Business

Designer, Requirement Specifier, System
Analyst,etc.)

– Developers (Software Architect, Capsule Designer,
Database Designer, Design Reviewer, Designer,
Implementor, etc.)

– Testers (Test Designer, Tester)
– Managers (Change Control Manager, Configuration

Manager, Deployment Manager, Project Manager,
etc.)

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 48

Object Oriented Process Models
RUP

● People and Roles
● Responsibilities of roles have to be clarified
● Tool to help: RACI-Matrix
● RACI = Responsible, Accountable,

Consulted, Informed
● Roles must be mapped to people

(m:n-mapping)
● Roles can change at each start of a project

phase

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 49

Object Oriented Process Models
RUP

● People and Roles

Source: www.jeckle.de

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 50

Object Oriented Process Models
RUP

● Comments
– RUP is established, but there are points of critique

[Hes01]:
● RUP still follows the waterfall model
● RUP is not sufficient architecture concentrated
● Iterations are coupled to phases, not to packages
● Needless complexity of RUP workflows (named now:

disciplines)
● Hierarchy, Recursion, and orthogonality are not used
● Not sufficient management support, milestones concept

is too weak

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 51

Agile Approaches
Overview

● Agile Process Models are an alternative to
traditional Software Development Processes

● Examples (1/2)
– eXtreme Programming (XP), see

www.extremeprogramming.org
– Scrum, see www.controlchaos.com

● Incremental process, the end of an iteration results in a set of
features

● Authors: Takeuchi / Nonaka, 1986; Schwaber / Beedle, 2002
● Terms out of Rugby: Pregame Phase, Development Phase

(Sprint), Postgame Phase

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 52

Agile Approaches
Overview

● Examples (2/2)
– Crystal-Process family

● Author: Cockburn, 1998
● Crystal Clear for small projects (up to 6 developer)
● Crystal Orange for midsize projects (up to 40 developer)

– Feature Driven Development (FDD) (Coad et. al.
2000)

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 53

Agile Approaches
Overview

● Developers of agile methods met, compared
their ideas, and clarified differences

www.agilemanifesto.org
● Basic values:

– Individuals and interactions over processes and
tools

– Working software over comprehensive
documentation

– Customer collaboration over contract negotiation
– Responding to change over following a plan

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 54

Agile Approaches
XP

● Developed 1996 by Kent Beck
● Basic values

– Communication: Regularly between customer and
developer and between developer themselves

– Simplicity: Regular rework of source code and
avoiding needlessness

– Feedback: Based on „User Stories“ many small
releases, continuous integration, continuous testing

– Courage: What is possible and what is not possible

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 55

Agile Approaches
XP

„XP is the most important movement in our field
today. I predict that it will be as essential to the
present generation as the S.E.I. and its
Capability Maturity Model were to the last.“

-- Tom DeMarco, Preface to „Planning Extreme
Programming“, 2001

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 56

Agile Approaches
XP

● User stories / Storycards
– User Stories to handle requirements in XP
– During the project the customer writes new user

stories, deletes old, changes, but has to prioritize
– Small piece of paper
– Basic for reports

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 57

Agile Approaches
XP

Coding Standards

Pair Programming

On-Site Customer

Small Releases

Continuous Integration

Testing

Metaphor

The Planning Game

Simple Design

Refactoring

Collective Code Ownership

Sustainable Pace

● 12 Practices

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 58

Agile Approaches
XP – 12 Practices

● Fine scale feedback
– Pair programming

● 2 developers work together,
● Always at least 2 know the code
● Change of roles as necessary (other user stories)

– Testing – Test Driven Development
● Developers write (to be automated) Unit-Tests before

coding ("Test-First"-approach)
● Customer defines parallel functionality tests

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 59

Agile Approaches
XP – 12 Practices

● Fine scale feedback
– The Planning Game

● Common release planning based on user stories
● Prioritization by customer – Effort guess by developers

– On-Site Customer
● A representative of the customer is always available to

discuss / answer questions and to get decisions
concerning user stories and test

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 60

Agile Approaches
XP – 12 Practices

● Continuous process
– Continuous Integration

● If a user story is done, it gets integrated in the whole
system

● Testing before and after integration to ensure functionality
– Refactoring

● Every time when it is detected that the design could be
improved, it has to be done

● Unit-Tests assure, that the functionality still works
– Small Releases

● About every +/- 4 weeks to get early customer feedback

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 61

Agile Approaches
XP – 12 Practices

● Shared understanding
– Coding Standards
– Collective Code Ownership

Everybody could change everywhere
– Simple Design (Refactoring)

● Design and Code as simple as possible
● Not needed code gets deleted immediately
● implement only what is needed to fulfill an user story

– Metaphor
Simple story how the system should work instead of
a complex architecture description

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 62

Agile Approaches
XP – 12 Practices

● Programmer welfare
– Sustainable Pace

The big needs in XP lead to intensive work, so that
overtime should not be done

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 63

Agile Approaches
XP

● Summary:

K. Beck, Embracing Change with Extreme Programming, IEEE Computer, Oct 1999.

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 64

Agile Approaches
XP

● Summary: Learning from XP
XP-Practices could be used in other Software
Development Processes as well
– "Test-First"-approach
– Small releases and continuous / frequent

integrations
– Pair Programming
– Refactoring to keep “projects well”

● A process model supporting XP is Scrum
... see www.methodsandtools.com

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 65

Comparison
RUP versus XP
● Heavy process
● Document / Artifact

concentrated
● Organization important
● Based on UML

● Roles
● Phases with Artifacts
● Specification

● Lean process
● User Stories / On-site

Customer
● Organization minimized
● Based on User Stories / On-

site Customer
● Collective Code Ownership
● Timeboxes
● User stories / storycards

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 66

More Process Models

● Evolutionary object oriented Software-
Development (EOS) [Hes01]

● Fountain Model [Pil96]
– Activities could be done parallel
– Highly iterative
– Specific phases could overlap

System

Component_1 Component_2 Component_3

Class_1 Class_2

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 67

More Process Models

● Chaos model from Raccoon [Rac95]
– extends the spiral model and waterfall model.
– Idea [wikipedia.org]

● An important change in perspective is if projects can be
thought of as whole units, or must be thought of in
pieces.

● Nobody writes thousands of lines of code in one sitting.
They write small pieces, one line at a time, verifying that
the small pieces work. Then they build up from there.

● The behaviour of a complex system emerges from the
combined behaviour of the smaller building blocks.

– Flexibility, to iterate in specific steps in the Software
Engineering Process, if requested

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 68

More Process Models

● Open Source Development Process

Source: LinuxCare, 2000, p4

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 69

More Process Models
Outlook

● New developments like the orientation on
components will lead to new process models,
that are based on basic concepts of the object
oriented process models

● Model based Software Development with the
idea to map business processes directly to
code (Model Driven Architecture – MDA)

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 70

Software Development Process
Improvements

● So: Great processes! But which process to use
for my project?
– There is no ideal process for each problem with

every possible constraint
– Every process has to be adapted to the specific

project
● Good: At least there should be any defined

process to make a project successful
● Better: Continuous process improvement

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 71

Software Development Process
Improvements – with CMMI

● CMMI = Capability Maturity Model Integrated
● Processes with Capability Level

– 0 (Incomplete)
– , up to
– 5 (Optimizing)

● Organization units get Maturity Level
– 1 (Initial)
– , up to
– 5 (Optimizing)

● The Maturity Level predicts the performance of
an Organization

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 72

Software Development Process
Improvements – with CMMI

5

4

3

2

1

0

"Optimizing"

“Quantitatively
Managed"

“Defined"

"Managed"

"Performed"

“Incomplete"

Process
unpredictable and
poorly controlled

Projects can repeat
previously mastered
tasks

Process characterized,
fairly well understood

Process
measured
and controlled

Process
dependent
on “Heroes”

Focus on process
improvement

● Maturity Levels

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 73

Software Development Process
Improvements – with CMMI

● Success stories

Source: D.R. Goldenson, D.L. Gibson, „Demonstrating the Impact and Benefits of CMMI:
An Update and Preliminary Results“, SEI Special Report CMU/SEI-2003-SR-009, October 2003
http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03sr009-revised.pdf.

Category Result Company
Costs 33% decrease in the average cost to fix a defect Boeing, Australia
Costs 20% reduction in unit software costs Lockheed Martin M&DS
Costs 60% reduction in cost of customer acceptance

Costs

Schedule General Motors

Schedule Northrop Grumman IT2

Schedule 15% improvement in internal on-time delivery

Quality Northrop Grumman IT2

5:1 ROI for quality activities Accenture

Northrop Grumman IT2

Thales Research &
Technology

Saved $2 million in first 6 months after reaching
CMM ML3

Sanchez Computer
Associates, Inc

Increased the percentage of milestones met from
approximately 50% to approximately 95%
Met every milestone (25 in a row) on time, with high
quality and customer satisfaction

Bosch Gasoline
Systems

Reduction in defects found from 6.6 per KLOC to 2.1
over 5 causal analysis cycles

Return on
Investment
Return on
Investment

13:1 ROI calculated as defects avoided per hour
spent in training and defect prevention

09/02/08 Uwe Gühl, Software Engineering 01 v1.1 74

Summary
● Substantial character of all process models:

Abstraction of problems to be solved
● There are alternatives to the waterfall model
● All up-to-date processes have in common:

Iterative Approach
● Trend: Agile Processes (only as much

formalism as necessary)
● Hint: Learn and improve your processes!

