
Lesson 03
UML / Structural Diagrams

v2.4

Uwe Gühl

Fall 2007/ 2008

Software Engineering

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 2

Contents
● Structure Diagrams

– Context – UML 2 Diagram types
– Overview
– Diagrams in detail

● Introduction to Object Orientation
● Object
● Class

– Diagrams and Java-Code
● Same values and identity
● Inheritance
● Polymorphism
● Associations between Classes

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 3

Structure Diagrams
Context

● A big milestone in the development of the
Unified Modeling Language (UML) was the
version 2.0 established in 2005

● Most UML tools now support most of UML 2.0
● The current UML version available is 2.1.1

(November 2007)
http://www.uml.org/#UML2.0

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 4

Structure Diagrams
Context

● UML Structure and Behaviour Diagrams
– Structure Diagrams show basic information of a

class, or a complete organization of an architecture
or whole system. They support a structural view
focussing on the static structure of the system using
objects, attributes, operations, and relationships.

– Behaviour Diagrams describe the dynamic
behaviour view focussing on object activities and
interactions as well as internal changes of states.
Use Case Diagrams show functional requirements
from the user's point of view.

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 5

Structure Diagrams
Overview

Diagram

Class
Diagram

Component
Diagram

Composite
Structure
Diagram

Object
Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State
Machine
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Communication
Diagram

Structure
Diagram

Behaviour
Diagram

Interaction
Diagram

= ImportanceUML 2

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 6

Structure Diagrams
Overview

● Structure Diagrams
– Class Diagrams are the central diagrams in UML,

showing classes and the relationships between
them

– Object Diagrams show instances of the abstract
structures in Class Diagrams

– Component Diagrams demonstrate system
interrelations

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 7

Structure Diagrams
Overview

● Structure Diagrams
– Deployment Diagrams visualize the execution

architecture of systems and focus on hardware
– Composite Structure Diagrams show the internal

structure of a class or component and indicate
interaction points to other parts of the system

– Package Diagrams depict the logical system
structure. Classes are bundled to packages to keep
the overview

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 8

Structure Diagrams
Class Diagram

● Questions to be answered
– What are the classes of my system?
– What are their relationships?

● Strengths
– Describes statical structure
– Shows structure dependencies and data types
– Basic for Behaviour Diagrams

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 9

Structure Diagrams
Object Diagram

● Questions to be answered
– What's the status of my system at a particular time

(snapshot of Class Diagram)
● Strengths

– Shows objects and their attribute values at a given
time

– Details like in the corresponding
Class Diagram

– Very good presentation of relations
of quantity

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 10

Structure Diagrams
Component Diagram

● Questions to be answered
– How could classes could be bundled to

components?
– What are the relationships of the components?

● Strengths
– Organizes technical system

components
– Enables

modelling of
interfaces

<<component >>
A

<<component >>
B

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 11

Structure Diagrams
Component Diagram

<<component>>
AComponent

● Black Box representation
Component

Stereotype

Name of
component

Symbol of
component

Port

AnInterface_4

Provided
interface
(Lollipop
symbol)

Required
interface

Complex
port

AnInterface_3

AnInterface_1

AnInterface_2

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 12

Structure Diagrams
Component Diagram

● Black Box representation - alternative
<<component>>

AComponent

<<provided interfaces>>
AnInterface_1
AnInterface_3
AnInterface_4

<<required interfaces >>
AnInterface_2

Stereotypes for components could be for example
<<specification>>
<<implement>>
<<entity>>
<<service>>
<<subsystem>>.

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 13

Structure Diagrams
Component Diagram

<<component>>
AnotherComponent

● White Box representation

<<component>>
AComponent

<<delegate>>

<<delegate>>

<<subsystem>>
Y

<<service>>
X

Nested
components
or classes

Component
connector

Delegation
connector

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 14

Structure Diagrams
Deployment Diagram

● Questions to be answered
– How does the environment (hardware, server, data

bases, …) of the system look like?
– How is the deployment of the components at

runtime?
● Strengths

– Shows runtime environment
of the system – mainly hardware

– Enables presentation of software server
– High abstraction level, few notation elements

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 15

Structure Diagrams
Deployment Diagram

● Deployment diagrams
– depict the physical resources in a system including

● nodes
● components
● connections

– show
● hardware of a system
● software that is installed on that hardware
● middleware used to connect the machines

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 16

Structure Diagrams
Deployment Diagram

● Notation of elements
– Node

A physical resource that executes code
components.

– Association
refers to a physical connection
between nodes, e. g. Ethernet

– Components and Nodes
Components inside a
node deploys them

Node
name

NodeNode

Server
<<component >>

A

<<component >>
B

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 17

Structure Diagrams
Deployment Diagram

● Notation of elements
<<device>> General node type
<<execution environment>> ... for components like J2EE

server or operating system
<<application server>> Specifies an application

server contenting in general
an <<execution environment>>

<<client workstation>> Takes services of an
<<application server>>

<<mobile device>> Mobile phone, notebook
<<embedded device>> Integrated systems

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 18

Structure Diagrams
Deployment Diagram

● Nodes offer a possibility to represent a system
resource:
– Device: Hardware unities at runtime (e. g.

computer, hard disk)
– Execution Environment:

● Run time environment
(e. g. operating system, EJB-Container,…)

● Could offer explicit interfaces as well – like EJB Server

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 19

Structure Diagrams
Deployment Diagram

● Nodes – Example 1

<<application server>>
Application server

+ Main memory: GbyteRAM =16
+ Hard disk: Gbyte = 250
+ Processor: GHz = 1.5

dd Attribute

<<execution environment>>
Linux

+ Distribution: Ubuntu 7.10

+ boot()
+ shutdown()

Stereotype

Operations

Node

Attributes

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 20

Structure Diagrams
Deployment Diagram

● Nodes – Example 2
– Association between two nodes to exchange

signals / messages
– including multiplicity
– Stereotypes (UML does not define Standard

stereotypes)

<<application server>>
Application server

dd CommunicationPath

<<client workstation>>
PC

+Server +Client
<<Internet>>1 1..*

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 21

Structure Diagrams
Composite Structure Diagram

● Questions to be answered
– How does the inner part of a class, component, or

subsystem look like?
● Strengths

– Good for top down modelling
– Medium detail level
– Modelling of part

relationships with ports

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 22

Structure Diagrams
Composite Structure Diagram

● Example

lf: Wheel

Car

rf: Wheel

lb: Wheel rb: Wheel

Encapsulated
classifier

Connector

A part

rear axle

front axle

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 23

Structure Diagrams
Package Diagram

● Questions to be answered
– How should I partition my system for clarity?

● Strengths
– shows how a system is split up into logical

groupings by showing the dependencies among
them

– logical
hierarchical
decomposition
of a system.

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 24

Introduction to Object Orientation
Programming Languages

Simula

Smalltalk

Objective C

C++
Eiffel

Java

C#

1960

1970

1980

1990

2000

Algol

Delphi

Fortran

Pascal C

Cobol

Object Cobol

OO

not OO

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 25

Introduction to Object Orientation
Terms

Object

Class

Inheritance

Message

Instance

Method

Overloading

abstract Class

Subclassesinstance variable

Class variable
multiple inheritance

Superclass

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 26

Introduction to Object Orientation
Comparison

Pragmatically
Object
+
Class
+
Inheritance

Abstract
Encapsulation
+
Classification
+
Polymorphism

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 27

Object
● An object is a capsule for state and behaviour
● Attributes (variables) save the status (the data)

of an object
● Operations (Methods, or Services) define the

behaviour of the object
● Operations change a status of an object
● An object is a concrete exemplar, an instance,

of a class and has an own identity, independent
from the values of its attributes

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 28

Object
● The idea of encapsulation: Access to the object

to get information about status is only possible
with defined operations

● Default / Confirmation / Invariance:
Attribute, that is always assured
Example: Radius of a circle-object

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 29

Object
Design in UML

aCircle: Circle

radius = 10
midpoint = (10, 5)

Object name

Attribute names

Class name

Attribute values

<< instance of >>

General: Rectangle
object name underlined
and uncapitalised

Example for instantiation
relationship

object: Class

objectClass

Attribute name = value

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 30

Class
● Definition of attributes and operations for a set

of objects – that means classes are templates
for concrete objects

● All objects of a class follow this definition, they
differ only in the concrete values of the
attributes

● Synonym for Class: Type

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 31

Class
Design in UML

<< stereotype >>
Package::Class
{attribute values}

Design as rectangle,
name bold and
capitalized. Below if
required attributes and
operations, separated by
a horizontal line

attribute1
attribute2

operation1()
operation2()

Class
operation1()
operation2()

Class

Class

attribute1
attribute2

operation1()
operation2()

Class

Class

attribute1
attribute2

Visibility attribute:Type=Initial value {Confirmation}

Visibility operation(parameter) : Return value {Confirmation}

Class

Alternative shortened
descriptions

Bad idea

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 32

Class
Design in UML

+ anzeigen()
+ entfernen()

setMittelpunkt(neuerMittelpunkt: Point)
setRadius (neuerRadius)

getRadius(): float

radius {radius>0}
- midpoint: Point = (0, 0)

+ display()
+ remove()

setMidpoint(newMidpoint: Point)
setRadius (newRadius)

getRadius(): float

<<Design class>>
Circle

GeometricalFigure
{abstract}Attribute value

Class name
Attribute name

Operations

Confirmation

Initial value

Attribute type

Parameter type

Parameter

Stereotype

Return value

Visibility

Examples for Stereotypes: <<Interface>>, <<Presentation>>, <<Enumeration>>
Examples for attribute values: {readOnly}, {obsolete}, {persistent}, {Version=1.5},

{Author=Hans Meier}

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 33

/* Functional class */
public class Circle {
 protected float radius;
 private Point midpoint = new Point(0,0);
 void display(){/* ToDo */};
 void delete(){/* ToDo */};
 void setMidpoint(Point newMidpoint) {
 midpoint = newMidpoint;
 };

 public void setRadius(float newRadius) {
 if (radius <= 0.0)
 System.err.println(
 "Fault: Radius must be greater than 0: "
 + newRadius);
 else
 radius = newRadius;
 }
}







radius {radius>0}
- midpoint: Point = (0, 0)

display()
delete()

setMidpoint(newMidpoint: Point)
setRadius (newRadius)

<<Functional class>>
Circle






Class
Diagram and Java-Code (1)

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 34

radius {radius>0}
- midpoint: Point = (0, 0)

display()
delete()

setMidpoint(newMidpoint: Point)
setRadius (newRadius)

<<Functional class>>
Circle






Class
Diagram and Java-Code (2)

A UML Diagram may content
information, which is not
necessary for coding
(e. g. Stereotype) – could be
explained with comments
Default values in a UML Diagram must possibly
be implemented explicitly
A valid UML Diagram has not to have all
information for a complete program
(e. g. visibility, types, program code)







05/02/08 Uwe Gühl, Software Engineering 03 v2.4 35

Class
Diagram and Java-Code (3)

● Because the UML is (more or less) independent
from programming languages, some modelling
opportunities exist, which are only interesting
for specific languages, e. g.
– Meta classes for Smalltalk
– Composition for C++

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 36

Class
Attributes

● Possible version

● Simplest case
– Presentation of attribute only as name

● General syntax
[visibility] [/] name
[: type] [multiplicity] [=default] [{property-string}]

Class

attribute1 Class attribute1

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 37

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● The visibility for attributes and operations could
be
+ : public
Unlimited access
: protected
Attribute is accessible in the defining class and in all
subclasses of the defining class
- : private
Only the defining class may access
~ : package
All classes in the same package may access

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 38

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● The slash [/] shows if the attribute is derived
and could be determined from other elements.
For example, length of a line could be a derived
attribute constructed from the line’s two
endpoints.

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 39

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● Example:
– Calculation of the age from date of birth and current

system time.
– Java code (No instance variable of age!)

public class Person {
 GregorianCalendar dateOfBirth = new GregorianCalendar();
 int getAge(){
 return GregorianCalendar.getInstance().get(Calendar.YEAR)
 - dateOfBirth.get(Calendar.YEAR);

 }
}

+ getAge(): int

Person
dateOfBirth: Date
/ age: int

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 40

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● [: type] stands for data type of an attribute
● Die UML offers predefined data types:

– Integer
– String
– Boolean

● There are no limits in data types, even complex
data types, which are defined by other classes,
are allowed

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 41

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● [multiplicity] shows the attribute’s multiplicity in
square brackets.

● The lower value is on the left, the higher on the
right side, separated by two dots [n .. m]

● Limits are natural numbers including 0, and “*“
for not limited

● If the multiplicity is omitted, 1 is the assumed
value

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 42

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● Often used
– [0 .. 1]: optional attribute
– [1 .. 1]: (abbreviated [1]): Attribute may not be

empty. If no multiplicity is given, the default [1 .. 1] is
valid

– [0 .. *]: (abbreviated [*]): optional any:
any number of instances or empty.

– [1 .. *]: minimal one instance, no limit
– [n .. m]: fix: minimal n, maximal m elements.

If n = m, then [n] is sufficient.

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 43

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● Example
– The class Person contents attributes

for at least one first name,
both parents and any children

– Java-Code:

Person

- firstNames: String [1 .. *]
- parents: Person [2]
- children: Person [0 ..*]

public class Person {
 private String[] firstNames; // minimal one first name!
 private Person[] parents; // exactly two parents
 private Person[] children; // any number of children

}

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 44

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● Default: The default value is set automatically

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 45

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]

● Following property strings can be applied to a
given attribute
– {readOnly}, values may not be changed
– {union}, e.g. weekdays : String {union}
– {subsets <property-name>}, e.g.
workingDays [subsets weekdays]
holidays [subsets weekdays]

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 46

Class
Attributes

[visibility][/] name
[: type] [multiplicity] [=default] [{property-string}]
– {redefines <property-name>}

The redefines property string is used to redefine an
attribute inherited from a superclass to change its
name.

– {ordered}, contents of a set ordered without duplicates
– {bag}, no order, duplicities allowed, e.g. {4,1,4,2}
– {seq} or {sequence}, contents is ordered and duplicates

are allowed
– {composite} attribute is responsible for deleting of

contained values

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 47

Class
Attributes

● Static attributes (and methods
as well) get underlined.

● Example:
– The class file contents a static variable separator,

which keeps the path separator of a specific
operation system (e. g. ‚/‘ oder ‚\‘)

– Java
code

File
- separator: char
- name: String

+ getSeparator() : char
+ setSeparator(char)
+ getName(): String
+ setName(String)

public class File {
private static char separator;
private String name;
public static String getSeparator() {
return separator;

 }
public String getName() {
return separator;

 }
 ...
}

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 48

Same values and identity
● Same values: Same values in attributes
● Identical: Same object, same memory

address

Circle

<< instanceOf >>

<< instanceOf >>

<< instanceOf >>

Same, but not
identical!

circle1: Circle
radius = 10

 midpoint = (10, 5)

circle2: Circle
radius = 10

 midpoint = (10, 5)
circle3: Circle

radius = 5
 midpoint = (20, 10)

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 49

Same values and identity
● Same Values: Use method "equals(...)"
● Identical: same object, same memory address

Use Equality operator "=="
Circle circle1 = new Circle(10, new Point(10,5));
Circle circle2 = new Circle(10, new Point(10,5));
Circle circle4 = circle1;
//circle1 and circle2 are the same:
circle1.equals(circle2) // true
circle1 == circle2 // false
//circle4 and circle1 are identical:
circle4.equals(circle1) // true
circle4 == circle1 // true

Attention: If you accidentally misuse „same“ instead of „identical“ objects
(and vice versa) – it's difficult to detect that kind of failures!
(especially collections;  Deep Copy versus Shallow Copy)!

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 50

Same values and identity
Excerpt: Deep / Shallow Copy

● A different copy strategy could be a very
important difference, especially concerning
complex objects and collections
– Deep Copy

Copy of an object and of all referenced objects
– Shallow Copy

Copy of an object and of all the references.
Notice: The referenced objects get not copied, only
the references, pointing at the original referenced
objects!

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 51

Same values and identity
Excerpt: Deep / Shallow Copy

● Example

a

b c

d e

a''

b'' c''

d'' e''

a' Shallow Copy

Deep Copy

Attention – Side effect!
Changing a'.b means

you change a.b as well!

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 52

Inheritance
● Concept to define common similarities between

classes only once
● Subclasses may

– Add attributes and operations to the inherited ones
from the superclass

– Overwrite inherited operations
● Differ

– Simple inheritance – only one superclass
(Smalltalk, Java)

– Multiple inheritance – many superclasses are
possible (C++)

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 53

Inheritance
● Abstract levels possible
● Classes could be abstract or concrete
● There are no instances from abstract classes
● Abstract class is always superclass

(makes it sense otherwise ?)
Idea: Structuring

● Concrete Classes may have subclasses

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 54

Inheritance
GeometricalObject

{abstract}

Polygon

Rectangle

Circle

Triangle

Alternative Design for abstract
classes – as {property} or cursive

Inheritance

A Rectangle is a Polygon

public abstract class GeometricalObject {}
public class Circle extends GeometricalObject{}
public abstract class Polygon extends GeometricalObject {}
public class Rectangle extends Polygon {}
public class Triangle extends Polygon {}

Java-Code:

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 55

Inheritance
● The abstract Class Collection offers the

common interface for all subclasses.
● The subclasses understand the sum of all

operations of all their super classes,
completed with own operations

● SortedCollection understands
– size(),
– add(),
– includes(),
– first(), and
– at().

● The implementation of an operation could be
changed independent from the same
signature in the sub class, e. g. to optimize
the implementation or to consider additional
attributes
Example: includes()

size()
add()

includes()

Collection

includes()

Set

includes()

SortedCollection

first()
at()

includes()

OrderedCollection

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 56

Inheritance
Pros and Cons

• Pro: high locality:
Similarities of classes are
described in only one
class

• Pro: easy to extend
Only the changed
behaviour has to be
defined in the subclass

Person

LecturerStudent

• Con: inflexible modelling:
Changes in future could
not be described
(„Roles“)

• Con: Specialization
relationships are not
always clear (Example:
Rectangle and Square)

• Con: Complexity rises,
when more classes are
established

Could be avoided by
functionality of an IDE

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 57

Inheritance
Discussion

x : int {x > 0}
y : int {y > 0}

Rectangle

{x = y}

Square

1

edge : int
{edge > 0}

Square

edge2 : int
{edge2 > 0}

Rectangle

2

x : int {x > 0}
y : int {y > 0}

Rectangle

isSquare():
boolean

3

(1) Discussion: Wasting disk
space in using Squares
(useless variable)

(2) Discussion: In static typed
programming languages
like C++ and Java Square
could never be used, if a
Rectangle is expected.

(3) Is a class for Square
really necessary? How to
handle Rectangles having
the same length of
edges?
 Square as property of
Rectangles

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 58

Polymorphy
● Polymorphy means that the same operation has

different behaviour in different classes
● Polymorphy is the object oriented alternative to

if / else or case statements.

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 59

Polymorphy
● Example: Before compiling it is not known, to

which object the message display() will be sent.
During runtime it will be decided
( „Late Binding“)

LinkedList geomObjects = new LinkedList();
geomObjects.add(new Circle(10, 10, 5);
geomObjekte.add(new Rectangle(0,0,10,20);
Iterator elements = geomObjects.iterator();
while(elements.hasNext())
{
 Object gm = elements.next();
 ((GeometricalObject) gm).display();
}

 Circle.display()

 Rectangle.display()

GeometricalObject

display()

Rectangle

display()

Circle

display()

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 60

Associations
● Between Objects and Classes could be

associations
● Example for object relationship:

A car has four wheels

lf: Wheel

An instance „Car“

Relationship
between

wheel and car

An instance
„Wheel“

ProfileDepth = 7mm

lb: Wheel

ProfileDepth = 8mm

rb: Wheel

ProfileDepth = 8mm

rf: Wheel

ProfileDepth = 4mm

myCar: Car

colour white
power = 102hp

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 61

Associations between Classes
● Associations could show cardinalities
● Example: A car has four wheels

Wheel Car4 1

Class CarClass Wheel A car has 4 wheels,
 a wheel has one car

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 62

Associations between Classes
● Classes could have any association with any

other class
● Associations could have different cardinalities
● Associations could be directional, showing in

which direction to navigate
● A cross indicates, if a navigation should not be

possible
● If there is no cross and no arrow it means that

the navigation is not specified (since UML 2.0)

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 63

Associations between Classes
● Associations could have role names

– A role name describes, how a class interprets an
associated class

● Associations could be named. The meaning
could be clarified with a reading direction
visualized with a small filled triangle.
– Don't mistake the reading direction with the

navigation direction in directional relationships

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 64

Associations between Classes
● Example

● A car belongs to a person
● A person owns a car

belongs to
PersonCar current cars ownerowns

Name of role

Reading directionAssociation name

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 65

Associations between Classes

Wheel Car4 1

Spare wheel
1

0 .. 1

Person0 .. *

Insurance

1

1 Person

1 .. *

1
owner

Previous owner

Name of role

Directional relation

Multiple associations
with car

● Example
No navigation

possible

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 66

Associations between Classes
Aggregation

Wheel Car4 Spare wheel0 .. 1

Aggregation

A car has a wheel
A wheel is part of a car

● Aggregation relationship models part- whole-
relationship

● Example for aggregation:
Wheels as parts of a car

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 67

Associations between Classes
Composition

● Composition is a strict aggregation: Parts can't
exist themselves

● Originally out of C++: The composite is in the
physical memory of the other

● Example: A car has four wheels. In this system
a wheel could not exist without a car:

● Another example: Account and invoice line item

Wheel Car4 Spare wheel0 .. 1

Composition

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 68

Associations between Classes
Coding

● Directional relationship:
Instance variable in object, where arrow begins.

● ...:1 relationship:
Instance variable is from type of referring
object.

● ...:n relationship:
Instance variable contents an array or a
collection class (e. g. vector)

● 0..n relationship:
Instance variable may be NULL as well. In a
1..n relationship the variable may not be empty

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 69

Associations between Classes
Coding

● Aggregation is not a specific element in Java.
It should be only considered in programming
logic in dependency between objects

● In Java is no difference in implementation
between aggregation and composition, different
to C++ for instance

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 70

Associations between Classes
Coding

public class Insurance {
 public Car car;
}

public class Car {
public Person[] previousOwner; /* no previous  null */
public Person owner;
public SpareWheel spareWheel; /* max. 1 */
public Wheel[] wheel; /* exactly 4 */

}

public class Person {
public Car[] currentCars;
public Car[] formerCars; /* could be empty */

}

Wheel Car4 1

Spare wheel
1

0 .. 1

Person1 .. * 0 .. *

Insurance

1

1 Person

1 .. *

1
owner

Previous
owner

05/02/08 Uwe Gühl, Software Engineering 03 v2.4 71

Links
● http://www.agilemodeling.com/essays/umlDiagrams.htm
● http://www.visual-paradigm.com/VPGallery/

