
Lesson 04
UML / Behavioral Diagrams

v1.4

Uwe Gühl

Fall 2007/ 2008

Software Engineering

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 2

Contents
● Messages and Methods
● Behavioral Diagrams

– Activity Diagrams
– Status Machine Diagrams
– Interaction Diagrams

● Sequence Diagrams
– Fragments
– Proceeding

● Communication Diagrams

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 3

Messages and Methods
● Objects communicate with messages

– A sender Object sends a message to a receiver
object.

– A message has a name, parameters, if needed, and
provides a result.

– The receiver object must be able to understand the
message

– The receiver object determines a confirming
method and executes the message

– An object could send a message to itself
● Please don't mistake message and method!

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 4

Messages and Methods
anEditor: GraphEditor

display()
getRadius()
setCenterPoint(p)

display()
delete()

setCenterPoint(newCenterPoint: Point)
setRadius (newRadius)

int getRadius()

Circle

radius {radius>0}
CenterPoint: Point = (0, 0)

aCircle: Circle

aCircle.display();
int i = aCircle.getRadius();
aCircle.setCenterPoint(p);

aCircle display.
i := aCircle getRadius.
aCircle setCenterPoint: p.

Smalltalk notation:
display(aCircle);
i = getRadius(aCircle);
setCenterPoint(aCircle, p);

Procedural:

Java notation:

● Example

Message
Receiver

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 5

Messages and Methods
Access

● The public methods of a class (the interface)
could hide different implementations

● The internal implementation could change over
time (e. g. concerning maintenance, tuning, ...),
but the clients of this class don't have to be
changed

● Encapsulation principle: The object offers with
its methods a service – how this service is
implemented is not important for the user

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 6

Messages and Methods
Access

● Example of a class Car

● How could the access to this class be
implemented?

Car
hasManualGearbox(): boolean
hasAutomaticGearbox(): boolean
hasSunroof(): boolean
hasAirConditioning(): boolean
...
setSunroof(boolean)
....

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 7

Messages and Methods
Access

● Alternative 1: Variables

+ Fewest code
– Implementation not encapsulated.

If the internal representation changes, all requests have to change as well

Example
 myCar = new Car();

myCar.hasManualGearbox = true;
myCar.engine = new Engine("V12");

public class Car {
 public Engine engine = new Engine("V6");
 public boolean hasManualGearbox = false;
 public boolean hasAutomaticGearbox = false;
 public boolean hasSunroof = false;
 public boolean hasAirConditioning = false;
 public Integer performanceHP;
 public Integer performanceKW;
 ...
}

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 8

Messages and Methods
Access

● Alternative 2: Methods

public class Car {
 private boolean hasManualGearbox = false;
 private boolean hasAutomaticGearbox = false;
 ...

 public boolean getAutomaticGearbox() {
 return hasAutomaticGearbox;
 }

 public void setAutomaticGearbox(boolean automaticGearbox) {
 hasAutomaticGearbox = automaticGearbox;
 }
 ...
}

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 9

Messages and Methods
Access

● Alternative 2: Methods

+ Access only with get and set methods. If the
implementation is going to be changed, the client could
still access like before

– More code (but typically support by IDE with automated
code generation)

Example
myCar = new Car();
myCar.setManualGearbox(true);
if (myCar.getManualGearbox()) { ... }

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 10

Messages and Methods
Access

● More alternatives
– lazy initialization
– calculating of results
– “tricky storage”

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 11

public class Fahrzeug {

 static final int SUNROOF = 1;
 static final int AIRCONDITIONING = 2;
 static final int ESP = 4;
 static final int NAVIGATIONSYSTEM = 8;

 public boolean hasAutomaticGearbox;
 int optionalEquipment = 0;

 public Engine getEngine() { // lazy initialization
 if (engine == null) {
 engine = new Engine();
 }
 return engine;
 }

 public Integer getPerformanceHP() { // calculated result
 return getPerformanceKW() / 0.745699871;
 }

 // complete different internal storage, e. g. as bit vector
 public boolean hasSunroof() {
 return ((optionalEquipment & SUNROOF) == SUNROOF);
 }

 public void setSunroof(boolean hasSunroof) {
 if (hasSunroof) {
 optionalEquipment = optionalEquipment | SUNROOF;
 } else {
 optionalEquipment = optionalEquipment ^ SUNROOF;
 }
 }
}

Worth to consider, if initialization is time
consuming and the attribute is not always

needed (immediately)

Saving variables (disk space),
but more computing time needed

e. g. because of
disk space or
reorganization

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 12

Behavioral Diagrams
Context

● UML Structural and Behavioral Diagrams
– Structural Diagrams show basic information of a

class, or a complete organization of an architecture
or whole system. They support a structural view
focusing on the static structure of the system using
objects, attributes, operations, and relationships.

– Behavioral Diagrams describe the dynamic
behavior view focusing on object activities and
interactions as well as internal changes of states.
Use Case Diagrams show functional requirements
from the user's point of view.

Repetition

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 13

Behavioral Diagrams
Overview

Diagram

Class
Diagram

Component
Diagram

Composite
Structure
Diagram

Object
Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State
Machine
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Timing
Diagram

Communication
Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

= ImportanceUML 2

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 14

Behavioral Diagrams
Overview

● Use Case Diagrams mainly show Actors,
Use Cases, and their relations

● Activity Diagrams illustrate business
processes, data flows, or complex logic within a
system

● State Machine Diagrams depict the states of
objects or interactions may be in, as well as the
transitions between states because of events

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 15

Behavioral Diagrams
Overview

● Interaction Diagrams
● Sequence Diagrams model the sequential logic, in effect

the time ordering of messages between classifiers
● Communication Diagrams show instances of classes,

their relations, and the message exchange. Formerly
called a Collaboration Diagram

● Timing Diagrams depict the change in state or condition
of a classifier instance or role over time. Typically used to
show the change in state because of external events.

● Interaction Overview Diagram overviews the control
flow within a system or business process. Each node /
activity within the diagram can show another interaction
diagram

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 16

Behavioral Diagrams
Use Case Diagrams

● Questions to be answered
– What provides my system for the environment?

● Strengths
– shows the external point of view
– outlines the context
– high abstraction level
– easy notation

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 17

Behavioral Diagrams
Activity Diagrams

● Questions to be answered
– What is the data flow in a process or algorithm?

● Strengths
– Detailed description with

● conditions
● loops
● junctions

– Parallelization and
synchronization possible

– Depicting of data flows

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 18

Behavioral Diagrams
State Machine Diagrams

● Questions to be answered
– Which state could an object, an interface, or a Use

Case get concerning specific events?
● Strengths

– Precise illustration of a state model with
● states
● events
● concurrencies
● conditions
● enter / exit activities

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 19

Behavioral Diagrams
Sequence Diagrams

● Questions to be answered
– Who is exchanging with whom when what

information?
● Strengths

– shows in detail
information exchange
between
communication partners

– Precise presentation of
chronological sequences
with concurrencies

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 20

Behavioral Diagrams
Communication Diagrams

● Questions to be answered
– Who communicates with whom?
– Who collaborates?

● Strengths
– displays information

exchange between
communication
partners

– offers an overview

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 21

Behavioral Diagrams
Timing Diagrams

● Questions to be answered
– When are which interaction partner in which state?

● Strengths
– Visualization of time behavior of classes and

interfaces
– Ideal for studying

time-critical details

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 22

Behavioral Diagrams
Interaction Overview Diagrams

● Questions to be answered
– When proceeds which action?

● Strengths
– Connects Interaction Diagrams

(Sequence / Communication / and Timing
Diagrams) on top level

– High abstraction level

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 23

Activity Diagrams
● Activity Diagrams

– depict, how a system realizes a specific behavior
– describe possible activities of a systems with

different nodes, which are connected through object
and control flows

– are good for modelling of activity oriented classes
(Example: Activities of Business Use Cases)

– follow since UML 2.0 the Petri Net semantics
– Also Nassi Shneiderman Struktrograms could be

transferred to Activity Diagrams

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 24

Activity Diagrams

Example using an activity diagram

Check offer
technically

Work on request

Request data Customer data

Offer draft

offer

S
al

es
 a

nd
 m

ar
ke

tin
g

Te
ch

ni
ca

l s
al

es

Make offer

Resource data

Operating data

technique

Start*

End*

Activity
name Fork*

Action
Join*

* Control Nodes

Data**
store

Partition in
swimlanes

** Object Nodes

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 25

Activity Diagrams
● Example

Control node

Handle message

Message Check message

Exception Handle message

[Message is correct]

[Message is
incorrect]

Condition

Action

Object node

Activity name

Flow

Activity

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 26

State Machine Diagrams
● State models help in illustrating condition based

behavior
● State Machine Diagrams show that

– an object has different behavior in different states
– an object reacts in different states only concerning

defined events
– defined events change the status of an object

● If such statements are not needed in your
system you don't need State Machine Diagrams

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 27

State Machine Diagrams
● State Machine Diagrams in the UML are an

extension of „Final machines“
(work of D. Harel Mid of the 1980s)

● Simplified assumptions:
– At a defined point in time a system has exactly one

state
– The transition from one state to another happens

without time lag

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 28

State Machine Diagrams
● When to use State Machine Diagrams?

– To model system behavior in a defined state if
defined events occur

– System behavior should be fractioned in smaller
and more simple parts …

● … to develop and to code easier
● … to test easier

– To model parallel running state machines
– to describe distributed systems

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 29

State Machine Diagrams
● A state machine is described as a frame,

contenting a pentagon in the left top
● In the pentagon the token „sm“ stands for

State Machine

sm description

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 30

State Machine Diagrams
● States are symbolized with

rounded rectangles, where the
name of the state is written

● Events cause actions in the
states:
– entry (action by entering the

state)
– exit (action by leaving the

state)
– do (as long as the state is

active and not left)
● An initial state is a special state

without an entry transition
● A final state is a special state

without an exit transition

State

State
entry / action1()
do / action2()
exit / action3()

State activities

State

Initial state

Final state

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 31

State Machine Diagrams

● From one state to another are transitions possible
● The transition is described in following syntax:
event(arguments)
[condition]
/operation(arguments)

● alternative description
Trigger
[Guard]
/Effect

● Trigger: Activator for the transition, several triggers are
separated by comma

● Guard: Condition, that must be true, to execute the transition
● Activity: This gets executed in the transition

Source
State

Target
State

Transition description

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 32

State Machine Diagrams
● If source state and target

state are the same, we talk
about self transition

● Transitions without label get
executed automatically, as
soon as the actions of the
source state are finished

● Hint: Epsilon transitions are
transitions a machine can
make without consuming any
input symbol

State1

State2

Event2

Event1

State3

ε-Transition

Self transition

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 33

State Machine Diagrams
● Example for states of a document

new

arranged

terminated

work-on()

finish()

work-on()

new()

destroy()

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 34

State Machine Diagrams
● Example for states of a document

– A document is after creation in the state new
– The activity work-on() changes it into the state
arranged

– Proceeding with work-on() does not change the
state.

– The transition finish() moves the document to
the status terminated

– Only from the state terminated it is possible to
remove the document out of the system

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 35

State Machine Diagrams

switched off

sm Room ventilator

Level 1

do / slow turn

Level 2

do / fast turn

Level 2 chosen /
switch 2

Level 1 chosen /
switch 1

● Example for a State Machine Diagram

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 36

Interaction Diagrams
● Basic principle of UML:

A UML Diagram is only one possible view,
describing a specific modeling aspect

● This basic principle becomes apparent in the
modelling of interactions

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 37

Interaction Diagrams
● Examples

:Man :Woman

asking_question :W
om

an
:M

an

asking_question

Sequence Diagram

:Man :Woman
1. asking_question

Communication Diagram

Timing Diagram

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 38

Interaction Diagrams
● In the Interaction diagrams we focus on

– Sequence Diagrams show the communication in a
system

– Communication Diagrams show, how parts of a
structure work together to fulfill a specified function

● Additional information
– Timing Diagrams show time behavior of a system,

e. g. time behavior of digital circuits
– Interaction Overview Diagrams illustrate the

collaboration of different interactions with a variant
of the Activity Diagram

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 39

Sequence Diagrams
● Sequence Diagrams ...

– are the most used Interaction Diagrams
– show the information exchange

● between communication partners in a system
● between systems

– model
● fix sequences
● chronological and logical activity conditions
● loops
● concurrencies

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 40

Sequence Diagrams
● A sequence shows a number of messages,

exchanged by a defined set of objects in a
temporal limited situation

● A Sequence Diagram highlights the
chronological way of the communication,
where the time flows top down

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 41

Sequence Diagrams
● In principle a Sequence Diagram could be

transferred in a Communication Diagram,
as is shows the same facts, only from another
perspective

● Following exceptions could not be displayed in
Communication Diagrams
– Interaction references („ref“)
– Combined fragments
– Event order

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 42

Sequence Diagrams
● Notation (1)

– sd (for Sequence Diagram) with the name of the
interaction and optional parameter

– sd is used as well in
● Communication Diagrams
● Timing Diagrams
● Interaction Overview Diagrams

sd Interaction name(parameter)

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 43

Sequence Diagrams
● Notation (2)

● Time flows top down
● A dashed perpendicular (time) line shows the

life time of a communication partner (objects)
● Above the line the object name is placed in a

box.
● A gray bar, overlaying the lifeline, represents the

control flow, that is the area, where the
communication partner are active

● Modeling of the activity sequence is optional
● At the border explanations and conditions like

time constraints could be added)

object1 : Class1

time line
Life line

inactive

active

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 44

Sequence Diagrams
● Notation (3)

– Messages can be complete, lost or found,
synchronous or asynchronous, call or signal

– Messages are depicted as arrows between the
lifelines of the objects. The message is displayed
on them following the form message(arguments)

– Solid arrowheads represent
synchronous messages (answer expected)

– Line arrowheads represent
asynchronous messages (no answer expected)

– Asynchronous messages may intersect, as they
could arrive in another order as they were sent

filled
head

open
head

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 45

Sequence Diagrams
● Notation (4)

– A creation of a new entity is symbolized with a
dashed line, pointing to the created object

– Return messages are displayed either as text in the
form (return := message()), or as separate,
dashed arrow with solid arrowhead

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 46

Sequence Diagrams
● Notation (5)

– Example

n1

n1:e

Synchronous
messages

Return
message

:A

:B

:C

n2
n3

Asynchronous
messages

Lost message

Found message

Creation message

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 47

Sequence Diagrams
● Notation (6)

new()

message()

delete()

return()
Object construction
and destruction

control
focus

lifeline

object1 : Class1

object2 : Class2

„Found
message“
Sender is
not
interesting
or out of
context

sd Example
Specific creation message
(dashed, points to created object)

„Lost message“
Receiver is not interesting or not known
(e. g. in frameworks, where the user is
not known during construction phase)

call()

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 48

Sequence Diagrams
● Notation (7)

message1()

return1()

object1 : Class1

object2 : Class2

Self delegation

Confirmation
(between
sending
message and
receiving
result
maximum
2 seconds)

object3 : Class3

message2()

return2()

sd Example

Time unit:
Seconds

{0..2}

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 49

Sequence Diagrams
Combined fragments (1)

● Combined (interaction) fragment help to model
a set of possible application flows in Sequence
Diagrams

● A combined fragment indicates an interaction
part, where specific rules are valid, influencing
the choices, order, and frequency of sending
and receiving events in the fragment

● Combined fragments represent all fundamental
control structures of programming languages
like loops and conditions

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 50

Sequence Diagrams
Combined fragments (2)

Consider is a filter for important messages
E. g..: Emphasizing of notable messages

consider

Ignore is a filter for unimportant messages
E. g.: Messages of no interest in specific context, a timer

ignore

Critical region encloses a critical atomic section.
E. g.: Fragments, which should not be interrupted

critical

Strict sequencing fragment - encloses a series of messages
which must be processed in the given order

strict

Weak sequencing fragment – encloses a number of sequences
for which all the messages must be processed in a life line in a
defined order

seq

Parallel fragment – models concurrent processing
E. g.: Interactions in any order

par

Loop fragment encloses a series of messages which are repeated
E. g. : modelling of loops (minint, maxint)

loop

Negative fragment encloses an invalid series of messages
E. g.: Negative Test sequences

neg

Break controls exceptions and alternatives
E. g.: Exception handling

break

Optional fragment
E. g.: Models „SWITCH/CASE“ constructs

opt

Alternative fragment
E. g.: Models „IF/THEN/ELSE“ constructs

alt

Assertion describes indispensable Interactions
An implementation has to follow the model exactly

assert

● Overview
Interaction
operators

= important

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 51

Sequence Diagrams
Combined fragments (3)

● Alternative fragment (alt)
– Alternative fragments model two or more alternative

activities, executed depending on conditions
– The conditions have to be disjunctive – exactly one

alternative has to be executed
– Example: Two possible sets of activities concerning

sending and receiving events
A) Sending event message1() concerning object1 (A1)

Receiving event message1() concerning object2 (B1)
B) Sending event message2() concerning object1 (A2)

Receiving event message2() concerning object2 (B2)

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 52

Sequence Diagrams
Combined fragments (4)

message1()

object1 : Class1

Interaction operator

object2 : Class2

sd Alternative example

alt

[x>0]

message2()
[else]

Interaction
operand

separates
operands

Interaction condition
(“Guard”) in brackets

combined interaction fragment

A1 B1

A2 B2

● Alternative fragment (alt)
Example

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 53

Sequence Diagrams
Combined fragments (5)

● Optional fragment (opt)
– The optional fragment models an optional activity,

executed depending on a condition
– The optional fragment is a simplified presentation of

two alternative fragments, where the second
fragment is empty

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 54

Sequence Diagrams
Combined fragments (6)

message1()

object1 : Class1

Interaction operator

object2 : Class2

opt

[x>0]
only one
interaction
operandInteraction

condition

● Optional fragment (opt)
Example sd Optional example

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 55

Sequence Diagrams
Combined fragments (7)

● Break fragment (break)
– The break fragment models an alternative

sequence of events that is processed instead of the
whole of the rest of the diagram

– The break fragment models the handling of
exceptions

– If a condition is fulfilled, the break fragment gets
executed, and then the direct environmental
interaction operator gets terminated – e. g. a loop
fragment

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 56

Sequence Diagrams
Combined fragments (8)

errormessage1()

object1 : Class1 object2 : Class2

break

[error == true]
only one
interaction
operandAbort

condition

● Break fragment (break)
Example sd Break example

message2()If condition [error == true] is
fulfilled, errormessage1() will
be sent, but message2() not

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 57

Sequence Diagrams
Combined fragments (9)

● Loop fragment (loop)
– The loop models an iteration, possible notations:

● loop(minint, maxint)
The loop traverses minimal minint and maximal
maxint times

● loop(minint, *)
The loop traverses minimal minint times

● loop(minint)
The loop traverses exact minint times

● loop(minint) means loop(0, *)
● loop(<boolean expression>)

The loop gets repeated, until the boolean operator is
evaluated as false

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 58

Sequence Diagrams
Combined fragments (10)

message1()

object1 : Class1 object2 : Class2

Number of
iterations

● Loop fragment (loop)
Example sd Loop example

loop (1, *)
only one
interaction
operand

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 59

Sequence Diagrams
Combined fragments (11)

● Parallel fragment (par)
– The parallel fragment models operands, that could

be executed in any order
– In the operands the order is sequential

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 60

Sequence Diagrams
Combined fragments (12)

return()

object1 : Class1 object2 : Class2

● Parallel fragment (par)
Example sd Parallel example

par
message1()

message2()

A1 B1

A3 B3

A2 B2
operand 1

operand 2

Order in operands fix
A1, B1, B2, A2
A3, B3

Possible combinations
A3, A1, B1, B3, B2, A2
A1, A3, B1, B2, A2, B3
....

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 61

Sequence Diagrams
Combined fragments (13)

● Weak sequencing fragment (seq)
– The weak sequencing fragment acts like par, but

additionally it has to be considered, that the order
on a life line stays remained

– A Sequence Diagram without interaction operators
has the same logic like a seq fragment

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 62

Sequence Diagrams
Combined fragments (14)

return()

object1 : Class1 object2 : Class2

● Weak sequencing fragment (seq)
Example sd Weak seq example

seq
message1()

message2()

A1 B1

A3 B3

A2 B2
operand 1

operand 2

Order in operands fix
A1, B1, B2, A2
A3, B3

Order in life lines fix
A1, A2, A3
B1, B2, B3

Here only one possible
combination
A1, B1, B2, A2, A3, B3

life lines

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 63

Sequence Diagrams
Combined fragments (15)

● Weak sequencing fragment (seq)
Example sd 2nd Weak seq example

seq

A1 B1

A3 B3
A2 B2

operand 3

Order in operands fix
A1, B1, B2, A2
A3, B3
C1, D1, D2, C2

Order in life lines fix
A1, A2, A3
B1, B2, B3
C1, C2
D1, D2

Possible combinations
A1, B1, B2, A2, A3, B3, C1, D1, D2, C2
A1, B1, C1, D1, B2, A2, A3, B3, D2, C2

life
lines

C1 D1
C2 D2

operand 2

operand 1

: A : B : C : D

Even if C1 is noticed after B2, it could be
executed before B2

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 64

Sequence Diagrams
Combined fragments (16)

● Strict sequencing fragment (strict)
– strict is acting like a seq fragment, but the order

has to be noted exactly like in the diagram
– Several operands are not needed, when using
strict

– strict affects only operands on its level.
Additional nested operands have their one rules

–

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 65

Sequence Diagrams
Combined fragments (17)

● Weak sequencing fragment (strict)
Example sd Strict seq example

strict

A1 B1

A3 B3
A2 B2

Only possible combination
A1, B1, B2, A2, A3, B3, C1, D1, D2, C2

C1 D1
C2 D2

: A : B : C : D

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 66

Sequence Diagrams
Combined fragments (18)

● Critical fragment (critical)
– Critical fragments model an atomic area
– During the execution of a critical area no other

sending and requesting activities take place beyond
– critical is important for concurrent systems

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 67

Sequence Diagrams
Combined fragments (19)

● Critical fragment (critical)
Example sd 2nd Weak seq example

seq
A1 B1

A3 B3
A2 B2

Possible combinations
A1, B1, B2, A2, A3, B3, C1, D1, D2, C2
A1, B1, C1, D1, D2, C2, B2, A2, A3, B3

C1 D1
C2 D2

: A : B : C : D

C1, D1, D2, C2 must always be handled
together

critical

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 68

Sequence Diagrams
Combined fragments (20)

searchFile

: Processor : StorageMedium

sd Load file

alt [Res== File does not exist]

: Monitor
loadFile

Res==searchFile

File does not exist

[Res== File existent]
par
loop (1, *)

[End of file not reached]
getData

return data

display progress

result

Example:

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 69

Sequence Diagrams
Proceeding

● When to use Sequence Diagrams
– Object Oriented Analysis

● to analyze information flows during the Business Process
Modeling

● to determine interactions in a Use Case
– Object Oriented Design

● Sequence of user interactions
● Interaction of specific system parts

– Implementation
● Documentation of critical algorithms

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 70

Sequence Diagrams
Proceeding

● Fragments should be applied to visualize
important details

● Readability is important, so may be not all
details should be expressed – depending on
context
– fundamental representation – e. g. for

communication in a project team
– detailed representation – to describe complex

algorithms

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 71

Communication Diagrams
● A Communication Diagram shows a set of

interactions between specified objects in a
context

● In the foreground are the objects and their
relations

● A Communication Diagram shows similar facts
as a Sequence Diagram, but with another view

● The presentation volume is a subset of the
Sequence Diagram

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 72

Communication Diagrams
● Communication diagrams typically focus on the

structural organization of objects that send and
receive messages

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 73

Communication Diagrams
● Notation

– Between the objects are association lines, where
messages are noted. A small arrow points from the
sender to the receiver

– Messages are written as
returnValue := message(arguments)

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 74

Communication Diagrams
● Notation

– Before a message you find a sequence expression,
finalized with a colon, to model

● the order of messages with unique numbers, where
parallel messages get the same number but additionally
characters, e. g. 1a, 1b

● the send conditions could be expressed as a guard
statement in square brackets, e. g.
2 [file loaded] print

● Iterations are labeled with a star *, in square brackets a
condition of the iteration could be described, e. g.
3.1* [data in cache] write

29/01/08 Uwe Gühl, Software Engineering 04 v1.4 75

Communication Diagrams
reserve (o: Order)
{
 OrderItem oitem;
 Article article;
 int quantity;
 for (int i = 1; i <= o.quantity(); i++)
 {
 oitem = o.getOrderItem(i);
 article = oitem.getOrderItem();
 quantity = oitem.getQuantity();
 articleStock.reserve (article, quantity);
 }
}

:Article
Reservation

:Order

:Article
Stock

:Order
Item

<<parameter>> o

1: reserve(o)

1*.1 [i=1 .. o.quantity()]:
oitem := getOrderItem(i)

1*.2: article := getArticle()
1*.3: quantity := getQuantity() <<local>> oitem

1*.4: reserve(article, quantity)

sd ArticleReservation

Direction of
message

Communication
Diagrams use the
“sd” code as well

order

● Example

