
Lesson 06
Object Oriented Design

v1.0

Uwe Gühl

Fall 2007/ 2008

Software Engineering

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 2

Contents
● Introduction
● Architecture
● Components

– Introduction
– Definitions
– Characteristics
– UML Diagram
– Interfaces
– Example
– Proceeding

● Interfaces

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 3

Contents
● Good Object Oriented Design

– Basic OO principles to modeling
– OO Design Principles and Heuristics
– Design Pattern

● Transition from OOA to OOD
● Good Object Oriented Code
● Sources

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 4

OOD
Introduction

● Design means
 to develop a solution
 for a given problem
 in consideration of given surrounding conditions

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 5

OOD
Introduction

● Goal of Object Oriented Design
– "The goal of [object-oriented design] is to manage dependencies

within a program. It achieves this goal by dividing the program into
chunks of manageable size, and the hiding those chunks behind
interfaces..." (Robert C. Martin).

– A major goal of object-oriented design is maximizing reusability of
classes and methods [AR00]

– The main goal of Object Oriented Design is to decompose the
system into modules, that is identifying the software architecture
so that it should maximize the cohesion and minimize the coupling
[She05]

– The goal of object-oriented design is to develop an object model
of a system to implement the identified requirements [RV04],
[Mol05]

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 6

OOD
Introduction

● Questions
– Now I know about Object Oriented Design –

so maybe the OOA Model is not sufficient
– Why do we need all these models in

Software Development?
– What's the difference between an

OOA and OOD model?
Must they be separated?

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 7

OOD
Introduction

● Discussion
– A model is always wrong, some are helpful
– A model is not identical with the subject
– A model is something like a statement about its

subject, focusing on a specific aspect disregarding
other aspects

– Multiple statements about a subject can be
combined in one model

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 8

OOD
Introduction

● Discussion
– Sometimes one model is not sufficient to integrate

all necessary statements about a subject –
more models are necessary

– Example out of physics: Wave-particle dualism
● 1803 Thomas Young showed in double-slit

experiments that light behaves as waves
● The photoelectric effect proves that light

exists of particles

Image source: http://en.wikipedia.org/wiki/Wave-particle_duality

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 9

OOD
Introduction

● Discussion concerning OOA, OOD, and OOP
– Even if the notation is integrated,

different models have different intentions
● Analysis model –

visualization of requirement specification
● Design model –

blueprint of the system
● Implementation –

runnable model
– All models should be iterated, there is a

dependency as well, but they should exist parallelTr
an

si
tio

ns
 in

 O
bj

ec
t O

rie
nt

ed
So

ftw
ar

e
D

ev
el

op
m

en
t

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 10

OOD
Introduction

● Discussion concerning OOA, OOD, and OOP
– The transition from one model to another means

creative mental effort
– This creative effort is part of the development

process and – typically – can not be automated
– That's why treat “Roundtrip Engineering” carefully –

attention with tools arguing code visualization
means object oriented modelling

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 11

OOD
Introduction

● Process oriented aspects
– Not everything is an object: There is behaviour,

that can not be assigned to “real world entities”
– Example: Usually a sort algorithm needs a

behaviour located outside of the objects to be
sorted

– Customers or contracts are entities of the real world
and could be modeled as objects with states and
behaviour

– So, a complete design must cover functional
objects and their relationships and process oriented
aspects

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 12

OOD
Introduction

Proceeding – Proposal
● Typical steps in a software design

– Define the application architecture
– Structure contents to components
– Develop components
– Develop the collaboration of the components
– Define the interfaces

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 13

OOD
Architecture

● Definition of the principle structure of a program
● Identification of layers, typical layers are

– Communication or presentation layer
(e. g. Java applets, HTML interface, IBM 3270
display terminal, Java GUI, and so on)

– Application logic (e. g. business logic in Java
applications, applets, or on a CORBA or J2EE
application server, Web-Services, etc.)

– Data management (e. g. relational database with
object relational mapping, access on a database via
JDBC, file system, etc.)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 14

OOD
Architecture

● Definition of interfaces and communication
protocols

● An application architecture is often already part
of the general constraints of a project

● Additionally to basic decisions – like application
logic into the application server or into the client
– frameworks often influence further details of
the architecture

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 15

OOD
Components – Introduction

Working example: Authorization

● Class model is alright for specified problem
● Model works fine in small applications, but

scaling problems expected for bigger ones

UserGroup

AbstractUser

ProfileRight

AbstractRight

OperationResource

has containscontains

Applies to

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 16

OOD
Components – Introduction

Limits of
object orientation

● Class as structuring element is too small
● Application concepts and function groups are

difficult to find Image source: Volker Wurst, www.ba-stuttgart.de/~vwurst, 6_komponenten.pdf

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 17

OOD
Components – Introduction

– The Taligent Project was one of the biggest C++
project in the 1990's

– Dependency graph when the project was stopped

Image source: Volker Wurst, www.ba-stuttgart.de/~vwurst, 6_komponenten.pdf

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 18

OOD
Components – Introduction

● Meanwhile exists an own approach
Component-based software engineering
(CBSE) that focus on software reuse

● Summarized components are more abstract
than object classes and can be understood as
independent service providers

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 19

OOD
Components – Definitions

● A component (latin componere = to put
something together) is part of a system or may
serve as a part of a system

● "A software component is a unit of composition
with contractually specified interfaces and
explicit context dependencies only. A software
component can be deployed independently and
is subject to composition by third parties.”
(Szyperski, ECOOP Workshop WCOP 1997)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 20

OOD
Components – Definitions

● “A software component is a software element
that conforms to a component model and can
be independently deployed and composed
without modification according to a composition
standard.”
(William T. Councill, George T. Heineman:
Component-Based Software Engineering. Addison-Wesley, 2001)

● A reusable software component is a logically
cohesive, loosely coupled module that denotes
a single abstraction. (Grady Booch)

● A software component is a static abstraction
with plugs. (Nierstrasz/Dami)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 21

OOD
Components – Definitions

● As Components deal with ports and interfaces
it's important to know the differences ...

● Interfaces
– An Interface is collection of operations provided

anywhere. It gives a name to such a collection.
– Interfaces don't provide behaviour
– An interface is something like a contract between a

service provider and a service user
– An interface is like a phone book, naming a service

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 22

OOD
Components – Definitions

● Interfaces
– An interface is a specification of required behavior (but

not the implementation) - The benefit of an interface is
that it lets you separate the specification of behavior
from its implementation (James Brucker)

● Ports
– Ports are instantiable (in contrast to interfaces)
– A port is a connection to an instance of a class
– Ports have an identity
– A port is like a phone distribution box, accepting

incoming call and connecting to the serving location

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 23

OOD
Components – Characteristics

1. A component exports one or several interfaces,
that are guaranteed like a contract, especially
the exact semantics of the interfaces.
Every Component C exporting the Interface I is
an Implementation of I.

2. A component imports other interfaces meaning
that the component is using the methods of this
imported interfaces.
The component is only executable, if all
interfaces are available.
This is the task of the configuration.

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 24

OOD
Components – Characteristics

3. A component hides the implementation and is
so interchangeable with another component
using the same interface

4. A component can easy be reused as it does
know anything about the environment where it
is running. It makes only minimal assumptions

5. A component could content other components,
a component hierarchy is possible

6. Beside interfaces components are the most
important utilities in design and implementation

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 25

OOD
Components – UML Diagram

<<component>>
AComponent

● Black Box representation
Component

Stereotype

Name of
component

Symbol of
component

Port

AnInterface_4

Provided
interface
(Lollipop
symbol)

Required
interface

Complex
port

AnInterface_3

AnInterface_1

AnInterface_2

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 26

OOD
Components – UML Diagram

● Black Box representation - alternative
<<component>>

AComponent

<<provided interfaces>>
AnInterface_1
AnInterface_3
AnInterface_4

<<required interfaces >>
AnInterface_2

Stereotypes for components could be for example
<<specification>>
<<implement>>
<<entity>>
<<service>>
<<subsystem>>.

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 27

OOD
Components – UML Diagram

<<component>>
AnotherComponent

● White Box representation

<<component>>
AComponent

<<delegate>>

<<delegate>>

<<subsystem>>
Y

<<service>>
X

Nested
components
or classes

Component
connector

Delegation
connector

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 28

OOD – Components
Working example: Authorization (cont'd)

Authorization

Authorization Core

LDAP Adapter

LDAP =
lightweight
directory
access
protocol

LDAP

LAd

L

DB

MySQL

JDBC

Database adapter

Acc Adm Authorization
GUI

A-GUI

Administration

Operational
service:
Access

permitted?

Component Authorization
● Export interfaces

➢ operational (Acc)
➢ administrative (A-GUI)

● Import interfaces
➢ LDAP (L)
➢ Database (JDBC)

E. g.
boolean
mayPerform
(user,
operation)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 29

OOD
Components – Interfaces

● The interfaces of a component are typically for
different kind of users

● Rule of thumb: The more user an interface has
the easier it should be usable

● Interfaces between components could help to
structure a project
– For example: Different components could be

developed in subprojects

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 30

OOD
Components – Interfaces

● Working example: Authorization (cont'd)
Interface will be used by ...
– Acc Application programmer

 ... to get out, if a user
may access or not

– A-GUI Administration
– Adm, Acc, LAd, DB Authorization expert
– LAd, L LDAP expert
– DB, JDBC Database expert
– Adm, A-GUI GUI programmer

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 31

OOD
Components – Example

● Discount calculation
– Description:

Discounts are given dependent on customer,
products and quantity

– Problem:
Which discount gets a customer if he orders a
specified product in a specified quantity?

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 32

OOD
Components – Example

● Discount calculation
– Proposed solution:

● Algorithm is in a black box
● Simple interfaces
● Data model for the discount problem is not necessary

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 33

OOD
Components – Example

● Discount calculation
– Possible implementation

Discount component
AdministrationOperational

double getDiscount(
 Customer c, Product p, int quantity);

void setDiscount(Customer c, double discount);
void setDiscount(Product p, double discount);
void setDiscount(int minQuantity, double discount);

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 34

OOD
Components – Proceeding

Formation of components – Considerations
● Difficult design decisions should be

encapsulated in separated components
(problem hiding)

● The logical dependencies of a component
should be clear

● Consideration concerning decoupling:
Could it be possible to use the component in a
completely different context?

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 35

OOD
Components – Proceeding

Formation of components – Considerations
● The data in a component should have the same

life cycle
– Example: Master data concerning variable data only

necessary for a specific transaction

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 36

OOD
Components – Proceeding

● Formation of components based on
Functional Requirements / OOA Model
– General recommendation out of [Oes06]:

● Per business process a workflow component
● Per Use Case a Use Case control component
● Per external system a component
● Functional components

– Advantage of this breakdown:
● The process oriented aspects of a system get explicit and

are separated from the modelling of the real world
entities

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 37

OOD
Components – Proceeding

– Recommendation for modelling of
process oriented components:

● Use of UML Activity Diagrams
● Activities in Use Cases could be mapped directly into

Activity Diagrams

[else]

[Condition]

Activity 1

Activity 3

Activity 2

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 38

OOD
Components – Proceeding

– Recommendation for modelling of
functional components

● In a functional component principally the class model
could be established out of the OOA class model

● Functional components get distinguished in the way that
loose coupling could be achieved

● Criteria for functional components
– Following functionality: close functionality like for example

composition should not be separated
– Classes in an inheritance hierarchy should be in one component

(Exception if a framework is used)
– Tightly coupled classes should be in one component

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 39

OOD
Components – Proceeding

● Criteria for functional components
– Technical classes (for example for security, persistence,

middleware) and classes with application logic (typically
business objects or process objects) should be in separated
components

– Small number of relationships between classes of different
components

– Small volume of message exchange between classes of different
components

– Requirements out of the architecture of distributed systems
– There should be no cyclical dependencies
– For expected changes as few components as possible should be

adapted
– Components used by other components should have similar

stability

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 40

OOD
Components – Proceeding

Collaboration of components
● Develop external interface of components

– Which classes and methods are accessible from
outside?

● Definition of collaboration of the components,
especially of the process oriented components
with functional components

Component

Interface1

Interface2

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 41

OOD
Component – Proceeding

● Step by step
– The formation of components should be done

iteratively. Special criteria – like the volume of
message exchange – could be measured not until
the first “trial and error” .

– Good formation of components could be critical,
especially in distributed systems, if components are
located on different systems (message exchange)

– In big projects it's not a bad idea to use
organizational boundaries, like for example team
boundaries, to define external interfaces of
components

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 42

OOD
Interfaces

● Goal should be to develop smart interfaces –
general principle
– The public interface of a class should be

preferably small
– The implementation of a functionality should be
private

– The Test-First-Approach supports this idea

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 43

OOD
Interfaces

● Interfaces – Considerations
– Adequacy

Who should use the interface?
● Application programmer versus technology specialist
● Operative versus administrative access
● Many versus less user

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 44

OOD
Interfaces

● Interfaces – Considerations
– Coupling / Complexity

● In general:
The user of an interface should only see what he needs –
not more not less

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 45

OOD
Interfaces

● Interfaces – Considerations
– Coupling / Complexity

● Possible designs concerning the parameter of an
interface

– Flat interfaces
● using only basic data types like String, int, ...
● Loose Coupling

– Deep interfaces
● using complex objects as parameter
● Close coupling

● Proposal: Instead of using internal objects of a
component one should better use “transport objects”
(value objects) for the interface to decouple the interface
from the internal implementation

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 46

OOD
Interfaces

● Value Objects / Data types
– “Value object” and “transport object” are synonyms
– Value objects

● hold only references to basic objects like String or
Container (with Array, Hashtable, ...)
Attention concerning container: Which objects are
referenced? Structures should be flat and basic

● have no functionality – typically only accessor methods
● are created typically only once, and then used only for

reading – change operations should be offered as
different services

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 47

OOD
Interfaces

● Value Objects / Data types
– Data types are intelligent Value Objects

● They contain own check logic
● Example: An ISBN object could content a check, if the

format is valid

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 48

OOD
Interfaces

● Comparison Domain Object / Value Object
– Example

public class Customer {
 int id;
 String firstName;
 String lastName;
 Address address;
 Account account;
}

public class CustomerTO {
 int id;
 String firstName;
 String lastName;
 String cityName;
 String zipcode;
 String streetName;
}

Customer

Address

Account

flat structure,
no references,

only data needed
in the context

References to
other domain

objects

account

address

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 49

OOD
Interfaces

● Interfaces – Proceeding
– Completeness concerning data types of the

interface
● It must be clear where all the used data types are defined
● Basic data types like String or Container are

unproblematic
● Complex data types; handling possibilities:

– The interface could offer a query returning the corresponding
data type – with a default initialization if required

– The data type is defined together with the interface but has to be
instantiated by client

– Another interface offers a query returning the parameter
But this results in a dependency to this other interface which
should be avoided

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 50

OOD
Interfaces

● Interfaces – Proceeding
– Independence from techniques

● First an interface should be defined constraint on
functionality and not on techniques

● Concerning the decision which concrete technique to use
maybe adaption are necessary because of constraints

● Reaction on programming errors or technical exceptions
like network problems are not part of the interface, but
functional exceptions could be part of it

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 51

OOD
Interfaces

● Interfaces – Proceeding
– Complete scope

● Exists for every operation a request to check the results
of it?

● Is it possible to test the preconditions of an operation?
● Is it possible to cancel a specific operation?

It is a sensible design decision if this is necessary or
should be possible

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 52

OOD
Interfaces

● What is specified in an interface?
– Syntax of the interface Always

● Methods, parameter, return values
– Possible errors and exceptions Mostly
– Semantic of the interface Vague

● Side effects (if so)
● Preconditions and postconditions
● Description of the functionality or result

– Non functional requirements Virtually never
● Performance
● Robustness

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 53

Basic object oriented principles

OOD
Good Object Oriented Design

● The OOD pyramid [Sha05]

Object oriented design
principles and heuristics

Design
Patterns

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 54

OOD
Good Object Oriented Design

● Basic OO principles to modeling [Sha05]
– Encapsulation

● Data and behavior are integrated and encapsulated in a
programming unit

● Goal: Assuring the highest level of decoupling between
classes

● Information hiding
Accessing of data only with methods

● Implementation hiding
Clearly defined interfaces hide internal implementation
details

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 55

OOD
Good Object Oriented Design

● Basic OO principles to modeling [Sha05]
– Inheritance

● Goal: Extend the behavior of a base class
● Interface inheritance describes a new interface in terms

of one or more existing interfaces
● Implementation inheritance defines a new implementation

in terms of one or more existing implementations

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 56

OOD
Good Object Oriented Design

● Basic OO principles to modeling [Sha05]
– Polymorphism

● Ability of different objects to respond differently to the
same message

● Goal: Clients can easier interact with similar objects using
the same operations

● Polymorphism is closely related to inheritance as well as
to encapsulation

● Inheritance polymorphism works on an inheritance chain
● Operational polymorphism specifies similar operations for

non-related out-of-inheritance classes or interfaces.

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 57

OOD
Good Object Oriented Design

● Basic OO principles to modeling [Sha05]
– Discussion

● Some OO principles are controversial in the sense that
they are inconsistent with one another.

● For example, to be able to inherit from a class, one
should know the internal structure of that class, while
encapsulation's goal is exactly the opposite – it tries to
hide as much of the class structure as possible

● Tradeoff between these two principles necessary

The art of OOD

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 58

OOD
Good Object Oriented Design

● OO Design Principles and Heuristics [Sha05]
– Introduction:

● Collected
– About a dozen OO design principles
– Four dozens OO design heuristics

● OO evangelists: Grady Booch, Bertrand Meyer,
Robert C. Martin, Barbara Liskov, and others

● OO design principles define the most common
scientifically derived approaches for building robust and
flexible systems

● These approaches proved to be the best tools in solving
numerous OO design issues that can't be captured by
fundamental OO principles

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 59

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]

Class structure and
relationships group

Package coupling
group

Package cohesion
group

● Single Responsibility
Principle (SRP)

● Open/Closed Principle
(OCP)

● Liskov Substitution
Principle (LSP)

● Dependency Inversion
Principle (DIP)

● Interface Segregation
Principle (ISP)

● Don't Repeat Yourself
(DRY)

● Keep it simple, stupid
(KISS)

● Reuse/Release
Equivalency Principle
(REP)

● Common Closure
Principle (CCP)

● Common Reuse
Principle (CRP)

● Acyclic Dependency
Principle (ADP)

● Stable Dependency
Principle (SDP)

● Stable Abstractions
Principle (SAP)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 60

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Class structure and relationships group

Design principles:
● Single Responsibility Principle (SRP)

– Also known as the cohesion principle
– One class should have only one responsibility or cover only one

functional unit
– A class should have only one reason to change
– No big “Swiss army knife®” classes
– Rather many small classes with high locality
– Advantages:

● Well arranged code
● Reusability easier

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 61

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Class structure and relationships group

Design principles:
● Open/Closed Principle (OCP)

– Classes should be open to extension but closed to modification
– Modules should be written so that they can be extended without

being modified
– Developers should be able to change what the modules do

without changing the modules' source code

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 62

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Class structure and relationships group

Design principles:
● Liskov Substitution Principle (LSP)

– also known as “Design by Contract”
– Subclasses should be able to substitute for their base classes
– Clients that use references to base classes must be able to use

the objects of derived classes without knowing them
– This principle is a generalization of a "design by contract"

approach that specifies that a polymorphic method of a subclass
can only replace

● its pre-condition by a weaker one
● its post-condition by a stronger one

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 63

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Class structure and relationships group

Design principles:
● Dependency Inversion Principle (DIP)

– High-level modules shouldn't depend on low-level modules.
– Abstractions shouldn't depend on details.
– Details should depend on abstractions.

● Interface Segregation Principle (ISP)
– clients shouldn't depend on the methods they don't use
– Multiple client-specific interfaces are better than one general-

purpose interface

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 64

OOD
Good Object Oriented Design

● OO Design Principles [MPW06]
– Class structure and relationships group

Design principles:
● Don't Repeat Yourself (DRY)

– also known as “Once and Only Once” or “Single Point of Truth
(SPOT)”

– Code should be written only once, duplication should be avoided
– If similar code is used more often, it should be concentrated e. g.

in an abstract parent class.
– Advantage: Easier to maintain, as common code has to be

changed at only one place

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 65

OOD
Good Object Oriented Design

● OO Design Principles
– Class structure and relationships group

Design principles:
● Keep it simple, stupid (KISS)

– No including of needless abstraction levels / generalizations etc.
– Advantages:

● The less code exists, the less effort has a maintenance
programmer later to get orientation in the system

● No „dead code“ in the system

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 66

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package cohesion group

This group deals with the principles that define
packaging approaches based on class
responsibilities (i. e., how strongly related the
responsibilities of classes are)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 67

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package cohesion group

Design principles:
● Reuse/Release Equivalency Principle (REP) [Mar96]

– makes release granularity equal to reuse granularity
– only components that are released through a tracking system

can be effectively reused. This granule is the package.
– Example:

With this principle code could be reused without need to look at
the source code (other than the public portions of header files).
Whenever these libraries are fixed or enhanced, a new version
gets released which can then be integrated into a system when
opportunity allows.
That is the reused code is to be treated like a product.

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 68

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package cohesion group

Design principles:
● Common Closure Principle (CCP)

– Classes that change together belong together
– Classes in a package should be closed together against the

same kinds of changes. A change that affects a package affects
all the classes in the package [Mar96]

– That means: More important than reusability, is maintainability

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 69

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package cohesion group

Design principles:
● Common Reuse Principle (CRP)

– Classes that aren't reused jointly shouldn't be grouped together
– Classes in a package are reused together. If you reuse one class

in a package, you reuse them all [Mar96]

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 70

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package coupling group

This group deals with principles that define
packaging approaches based on the packages'
collaboration (i. e. how much one package relies on
or is connected to another)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 71

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package coupling group

Design principles:
● Acyclic Dependency Principle (ADP)

– prohibits forming cyclic dependencies among packages
– The dependency structure between packages must be a directed

acyclic graph. That is, there must be not cycles in the
dependency structure [Mar96]

Dependent package Package

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 72

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package coupling group

Design principles:
● Stable Dependency Principle (SDP) [Mar00]

– package dependency should be allowed to reinforce package
stability

– Stability is related to the amount of work required to make a
change.

X

Y

Y is unstable – depending on 3 packagesX is stable - independent

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 73

OOD
Good Object Oriented Design

● OO Design Principles [Sha05]
– Package coupling group

Design principles:
● Stable Abstractions Principle (SAP) [Mar00]

– stable packages should be abstract packages
– Idea is to create a packages structure of an application as a set

of interconnected packages with instable packages at the top,
and stable packages on the bottom.
In this view, all dependencies point downwards.
Hence, those packages at the top are instable and flexible.
But those at the bottom are very stable and should be difficult to
change.
These packages should be highly abstract, so they could easily
be extended

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 74

OOD
Good Object Oriented Design

● OO Design Heuristics [Sha05]
– Design heuristics derive from the practical

experience of OO developers
– Heuristics can extend design principles to several

specific implementations
– Design heuristics are grouped by their application:

class structure, object-oriented applications,
relationships between classes and objects,
inheritance and association relationships, etc.

– Heuristics are less fundamental than design
principles, but they clarify, explain, and expand
design principles

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 75

OOD
Good Object Oriented Design

● OO Design Principles and Heuristics [Sha05]
– Both design principles and heuristics can be

controversial - some design principles and
heuristics have internal dissension, while others
contradict each other.

– Examples
● Conforming to the Open/Closed Principle can be

expensive and lead to unnecessary complexity - the class
model should be pertinent to a specific context

● Liskov Substitution Principle restricts the use of
inheritance while the Open/Closed Principle embraces it

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 76

OOD
Good Object Oriented Design

● Design Pattern [Sha05]
– Design patterns represent common solutions to

design problems solved in a particular context
– So far collected

● 23 basic design patterns [GHJV95]
● 21 core J2EE patterns by the Sun Java Center
● 51 patterns of enterprise application architecture

identified by Martin Fowler et al.
● 65 enterprise integration patterns
● ... lot of patterns specific to particular problem domains

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 77

OOD
Good Object Oriented Design

● Design Pattern [Sha05]
– Design Pattern represent good design practices

and span a wide range of solutions from general
topics like object lifecycle and structure to more
specific themes such as integration tiers, data
transfer, and transformation.

– Rule of thumb:
● Try to apply patterns where application design would

benefit from performance and flexibility
● However, sometimes you have to choose patterns based

on just one "benefit"

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 78

OOD
Transition from OOA to OOD

● Inheritance
– Classifications could be modeled with inheritance

but only applicable classifications should be chosen
– In general: Use inheritance economically
– In inheritance hierarchies additional classes could

be necessary
– If changes are expected find and use appropriate

Design Pattern

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 79

OOD
Transition from OOA to OOD

● Attributes of entities – consider
– Quantity structure
– Data types and data structures to existing interfaces
– Data types and data structures in databases

● Definition of technical classes, for example
– Collection classes, iterators, utility classes, data

storage classes, classes for process oriented
aspects

● Definition of persistent objects – defining the
mapping into the database

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 80

OOD
Transition from OOA to OOD

● Example
OOA Model

– Example for instances

type: String
color: String
price: double

Car
name: String
code: String
price: double
standard: boolean

Configuration

[1..n]configuration

type „E 220 CDI“
color: „Obsidian black“
price: 33450,00

car: Car

name = „Aircondition“
code = „K005“
price = 1200,0
standard = true

aircon:Configuration

name = „Tiptronic“
code = „A003“
price = 1600,0
standard = false

automatic:Configuration
configuration

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 81

OOD
Transition from OOA to OOD

● Example OOD Model (1)
– Requirement:

● It should be possible to search quickly e. g. for cars
which have automatic gear and air condition

– Design considerations
● A 1:1 realization of the analysis model would be too slow,

because all the cars have to be initialized with all
configurations

– Design decision
● Redundant keeping of data in class Car

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 82

OOD
Transition from OOA to OOD

● Example OOD Model (1)

– Precondition is the possibility to use partly initialized
object structures

type: String
color: String
price: double
hasAircon: boolean
hasAutomatic: boolean

Car

name: String
code: String
price: double
standard: boolean

Configuration

[1..n]configuration

type „E 220 CDI“
color: „Obsidian black“
price: 33450,00
hasAircon: true
hasAutomatic: false

car5: Car
type „E 220 CDI“
color: „Obsidian black“
price: 33450,00
hasAircon: true
hasAutomatic: false

car5: Car

type „E 220 CDI“
color: „Obsidian black“
price: 33450,00
hasAircon: true
hasAutomatic: false

car5: Cartype „E 220 CDI“
color: „Obsidian black“
price: 33450,00
hasAircon: true
hasAutomatic: false

car4: Car

type „E 220 CDI“
color: „Obsidian black“
price: 33450,00
hasAircon: true
hasAutomatic: false

car5: Car

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 83

OOD
Transition from OOA to OOD

● Example OOD Model (2)
– Requirement:

● The cars should be presented in a GUI
– Design decision

● Use of Java Swing classes

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 84

OOD
Transition from OOA to OOD

● Example OOD Model (2)

type: String
color: String
price: double
hasAircon: boolean
hasAutomatic: boolean

Car
name: String
code: String
price: double
standard: boolean

Configuration

[1..n]configuration

javax.swing.JPanel

addWidgets()

CarPanel

- createAndShowGUI()
+ main()
+ createComponents()

CarApplication

<<interface>>
java.awt.event.ActionListener

cars

carList

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 85

OOD
Transition from OOA to OOD

● Example OOD Model (3)
– Requirement

● Arrangement of the application in layers
– Design decision

● Grouping of classes belonging together in packages

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 86

OOD
Transition from OOA to OOD

● Example OOD Model (3)

type: String
color: String
price: double
hasAircon: boolean
hasAutomatic: boolean

Car
name: String
code: String
price: double
standard: boolean

Configuration

[1..n]configuration

addWidgets()

CarPanel

- createAndShowGUI()
+ main()
+ createComponents()

CarApplication
carList

myapp.domain

<<import>>myapp.presentation

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 87

OOD
Transition from OOA to OOD

● Example OOD Model (4)
– Requirement

● Data should be stored in a database
– Design decision

● Use of Enterprise Java Beans (EJB)
● Implementation of needed EJB classes
● More classes get generated typically automated

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 88

OOD
Transition from OOA to OOD

● Example OOD Model (4)

type: String
color: String
price: double
hasAircon: boolean
hasAutomatic: boolean

CarBean

<<interface>>
CarHome

javax.ejb.EJBHome

<<interface>>
Car

javax.ejb.EJBObject

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 89

OOD
Transition from OOA to OOD

● Summary
– OOA focus on the functional class model,

OOD considers possible reuse, modification issues,
maintainability, and implementation aspects

 That's why the models are different, typically the
OOD model is changed, and / or extended

– More reasons for a different OOD model
● Resolution of multiple inheritance
● Memory restriction (every class has some memory

overhead - many objects means extended memory
demand)

● Performance (network traffic, restricted database access)

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 90

OOD
Good Object Oriented Code

Task:
● A message system delivers different messages

– User data
– Start of initial load
– End of initial load

● Depending on the kind of message follows a
different processing

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 91

OOD
Good Object Oriented Code

Message

StopInitialLoadUserDataStartInitialLoad

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 92

OOD
Good Object Oriented Code

Solution 1 (procedural)

public class Importer {
....
 public void main(...) {
 Message message = getNextMessage();
 if (message instanceof StartInitialLoad)

 processStartInitialLoad();
 else if (message instanceof StopInitialLoad)

 processStopInitialLoad();
 else

 processUserDataMessage(message);
 }
}

Message

StopInitialLoadUserDataStartInitialLoad

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 93

OOD
Good Object Oriented Code

Solution 2 (a little bit better)

public class Importer {
....
 public void main(...) {
 Message message = getNextMessage();
 if (message.isStartInitialLoad())

 processStartInitialLoad();
 else if (message.isStopInitialLoad())

 processStopInitialLoad();
 else

 processUserDataMessage(message);
 }
}

StopInitialLoadUserDataStartInitialLoad

Message

isStartInitialLoad()
isStopInitialLoad()

isUserDataMessage()

isStartInitialLoad() isUserDataMessage() isStopInitialLoad()

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 94

OOD
Good Object Oriented Code

Solution 3 (object oriented)

public class Importer {
....
public void main(...) {
 Message message = getNextMessage();
 message.process();
}



StopInitialLoadUserDataStartInitialLoad

Message

process()

process() process() process()

Substituting the if
else statements with
the polymorph method

process()

Every subclass
overwrites process()to

handle the different
message types

06/02/08 Uwe Gühl, Software Engineering 06 v1.0 95

Sources
[AR00] Mohamed Abdelrahman, Abdul Rasheed, "A Methodology for Development of Configurable

Remote Access Measurement System", Transactions of Instrumentation Society of America
Transactions, 2000.

[Mar96] Robert C. Martin, Granularity,
http://www.objectmentor.com/resources/articles/granularity.pdf, 1996

[Mar00] Robert C. Martin, Principles and Patterns, http://www.objectmentor.com/resources/articles/
Principles_and_Patterns.pdf, 2000

[Mol05] Muhammad K. Bashar Molla: An Overview Of Object Oriented Design Heuristics, Master
Thesis, Department of Computer Science, Umeå University, Sweden,
http://www.cs.umu.se/~ens03mbr/thesis/finalreport.pdf, January 27, 2005

[MPW06] Brett D. McLaughlin, Gary Pollice, David West: Head First Object Oriented Analysis and
Design, O'Reilly, 2006

[RV04] Steve Roach, Javier C Vásquez: A Tool to Support the CRC Design Method,
http://succeednow.org/icee/Papers%5C339_Roach-Vasquez_(1).pdf, 2004

[Sha05] Gene Shadrin: Three Sources of a Solid Object-Oriented Design; Design heuristics,
scientifically proven OO design guidelines, and the world beyond the beginning, http://java.sys-
con.com/read/84633.htm, May. 11, 2005

[She05] Girish Shetty: C++ Design and Coding Tips, http://newlc.com/C-Design-and-Coding-
Tips.html, 2005

