
Lesson Design Pattern
General

v1.0

Uwe Gühl

Winter 2007/ 2008

Software Engineering

03/12/07 Uwe Gühl, Software Engineering DP v1.0 2

Contents
● Introduction
● Overview

– Creational Patterns
– Structural Patterns
– Behavioral Patterns

● Reuse

03/12/07 Uwe Gühl, Software Engineering DP v1.0 3

Introduction
● Basic [GHJ+95]:

– Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, „Design Patterns - Elements of Reusable
Object-Oriented Software“, 1995

● Practical Reference [Coo98]
– Practical reference with Java Example Code from

James W. Cooper: „The Design Patterns Java
Companion“,
http://www.patterndepot.com/put/8/JavaPatterns.ht
m, 1998

● More: [AIS+77], [CV02], [Joh92], [JZ91]

03/12/07 Uwe Gühl, Software Engineering DP v1.0 4

Introduction
● Meanwhile exist more pattern collections:

– Analysis Patterns
– Process Patterns
– Architecture Patterns
– Test Patterns
– Anti Patterns

● „One of the ways that I measure the quality of an
object-oriented system is to judge whether or not its
developers have paid careful attention to the common
collaborations among its objects“ (Grady Booch)

03/12/07 Uwe Gühl, Software Engineering DP v1.0 5

Introduction
● Design Patterns

– describe successful applied solutions for
perseverative problems

– were described first by C. Alexander concerning
architectural problems [AIS+77]

– are found and not invented

03/12/07 Uwe Gühl, Software Engineering DP v1.0 6

Introduction
● Design Patterns

– improve communication
● “We use the Decorator Pattern to be able to represent

different options of our product”
● Discussion in a higher abstract level, not too much

discussion about details
– improve code

● public class Espresso extends Decorator
● public class Results implements Observable
● // We use Proxy here to ...

03/12/07 Uwe Gühl, Software Engineering DP v1.0 7

Introduction
● Difference by size

– Architectural pattern
Solutions for preliminary design (Example: Multi
level architecture)

– (Ordinary) Design Pattern
Solutions for problems in detailed design,
independent from programming languages

– Idioms
Programming language depending solutions (Do‘s
and Don‘ts)

03/12/07 Uwe Gühl, Software Engineering DP v1.0 8

Introduction
● Elements of a Design Pattern

– Pattern name (for efficient Communication)
– Problem description - problem to be solved by the

design pattern
– Problem context – to describe when the pattern

should be used (and when not!)
– Solution of the problem
– Consequences (Pros and cons)

03/12/07 Uwe Gühl, Software Engineering DP v1.0 9

Introduction
● Description in UML

– Design Patterns describe roles, which could be
assigned by a concrete implementation of
corresponding classes

– A concrete class could play different roles in
different Design Patterns at the same time

Class1

Class2 Class3

Design Pattern

role1

role2 role3

03/12/07 Uwe Gühl, Software Engineering DP v1.0 10

Introduction
● Description in UML – Example

Class1

Class2 Class3

Design Pattern 1

role1a

role1b

role1c

Class4

Design Pattern 2

role 2a role 2b

03/12/07 Uwe Gühl, Software Engineering DP v1.0 11

Introduction

Decorator

Connection

CompositeFigure

Connector

Drawing

DrawingView

Figure

ShortestDistanceConnector

RectangularConnector

Composite

Observer

Strategy

0..*

0..*0..*

0..*

Composite

Leaf

Component

Leaf

Observer

Subject
Strategy

Context

ConcreteStrategy

Simplified extract out of the
HotDraw Framework
(K. Beck / W. Cunningham;
Java-Version from E. Gamma):

The Class Figure is the Subject of the Observer-Pattern,
a Component of the Composite-Pattern and the Context of a
Strategy-Pattern at the same time.

03/12/07 Uwe Gühl, Software Engineering DP v1.0 12

Introduction
● For what?

Design Patterns solve Design Problems like
– finding„right“ objects
– determination of the granularity
– specification of interfaces
– implementation aspects (inheritance)
– consideration of reuse
– determination of performance
– maintainability

03/12/07 Uwe Gühl, Software Engineering DP v1.0 13

Introduction
● How to find?

I have a problem and I am looking for a Design
Pattern to help me solving it
– Read the overview of individual pattern
– Study the interaction of the pattern
– Examine patterns of the same category
– Reflect, what could be reasons for redesign
– Think about what should vary in the design
– Read the description of an interesting design

pattern to get an overview

03/12/07 Uwe Gühl, Software Engineering DP v1.0 14

Introduction
● How to find?

– Understand structure, participants and the
collaboration between the participants

– Study example code
– Determine names for pattern participants, which are

important in the implementation context
– Define classes
– Find implementation specific names for methods in

the pattern
– Implement methods to realize responsibilities and

interrelationships in the pattern

03/12/07 Uwe Gühl, Software Engineering DP v1.0 15

Overview
● [GHJ+95] describes 23 Patterns, organized in

three categories
– Creational Patterns

discuss the process of object generation
– Structural Patterns

concern about the arrangement of classes
– Behavioral Patterns

describe, how objects work together and share
responsibility

03/12/07 Uwe Gühl, Software Engineering DP v1.0 16

Overview
● [GHJ+95] depicts most patterns like this

– Intent
– Motivation
– Applicability
– Structure including Participants and Collaboration
– Example
– Consequences
– Implementation, and
– Known Uses

03/12/07 Uwe Gühl, Software Engineering DP v1.0 17

Overview

Creational Structural Behavioral
Class Factory Method Adapter (Class) Interpreter

Template Method
Object Abstract Factory

Builder
Prototype
Singleton

Adapter (Object)
Bridge
Composite
Decorator
Facade
Flyweigth
Proxy

Chain of Reponsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

03/12/07 Uwe Gühl, Software Engineering DP v1.0 18

Overview
Creational Pattern

● Creational Patterns
– deal with the process of object generation

● Scope „Classes”
– Factory Method

● Scope „Objects“
– Abstract Factory
– Builder
– Prototype
– Singleton

03/12/07 Uwe Gühl, Software Engineering DP v1.0 19

Overview
Creational Pattern

● Abstract Factory
– defines an interface to generate families of related

or dependent objects without specifying their
concrete classes

● Builder
– helps to separate the construction process of a

complex object from its representation, so that the
same process could create different representations

()

03/12/07 Uwe Gühl, Software Engineering DP v1.0 20

Overview
Creational Pattern

● Factory Method
– defines a common interface for object generation.

Delegates the decision, which concrete class to be
instantiated to the subclasses

● Prototype
– specifies the objects, which could be used as a

prototypical instance, and creates new objects by
copying this prototype

03/12/07 Uwe Gühl, Software Engineering DP v1.0 21

Overview
Creational Pattern

● Singleton
– ensures that a specific class has only one instance

and enables a global access to it

03/12/07 Uwe Gühl, Software Engineering DP v1.0 22

Overview
Structural Pattern

● Adapter
– converts the interface of a class, so that a

collaboration of classes is possible even with
incompatible interfaces

● Bridge
– decouples an abstraction from its implementation

so that both can vary independently

()

03/12/07 Uwe Gühl, Software Engineering DP v1.0 23

Overview
Structural Pattern

● Composite
– composes objects into tree structures to represent

part-whole hierarchies
– a client could access objects and composites of

objects in the same way

03/12/07 Uwe Gühl, Software Engineering DP v1.0 24

Overview
Structural Pattern

● Decorator
– adds additional responsibilities to a specified object

instead of all objects of a class dynamically
● Facade

– defines a simplified interface to a larger body of
code for a component

03/12/07 Uwe Gühl, Software Engineering DP v1.0 25

Overview
Structural Pattern

● Flyweight
– supports the efficient, cooperative use of a large

number of small objects
● Proxy

– A proxy is a class functioning as a placeholder to
another object like a network connection or a large
object in memory to control access to it

03/12/07 Uwe Gühl, Software Engineering DP v1.0 26

Overview
Behavioral Pattern

● Chain of Responsibility
– used to pass responsibility for handling a request to

another class in a chain
● Command

– A command object encapsulates an action and its
parameters, supports Undo operations

03/12/07 Uwe Gühl, Software Engineering DP v1.0 27

Overview
Behavioral Pattern

● Interpreter
– as a particular design pattern proposes to

implement a specialized computer language to
rapidly solve a defined class of problems

● Iterator
– provides a way to access the elements of an

aggregate object step by step without exposing its
underlying representation

()

03/12/07 Uwe Gühl, Software Engineering DP v1.0 28

Overview
Behavioral Pattern

● Mediator
– defines an object to encapsulate the interaction of a

set of corresponding objects
● Memento

– extracts the state of another object without violating
its encapsulation

()

()

03/12/07 Uwe Gühl, Software Engineering DP v1.0 29

Overview
Behavioral Pattern

● Observer
– defines a 1:n relationship, so that if one object is

changed all dependent objects could be informed
and updated automatically

● State
– allow an object to change its behaviour when its

internal state changes

03/12/07 Uwe Gühl, Software Engineering DP v1.0 30

Overview
Behavioral Pattern

● Strategy
– defines a family of algorithms, encapsulate each

one, and make them interchangeable, so algorithms
could vary independently from clients using it

● Template Method
– defines the skeleton of an algorithm in an operation,

deferring some steps to subclasses

03/12/07 Uwe Gühl, Software Engineering DP v1.0 31

Overview
Behavioral Pattern

● Visitor
– defines a way of separating an algorithm from an

object structure.
New operations could be added to existing object
structures without modifying those structures.

03/12/07 Uwe Gühl, Software Engineering DP v1.0 32

Reuse
● Goal:

Development of flexible reusable Software
● Design Patterns help to achieve this goal!

03/12/07 Uwe Gühl, Software Engineering DP v1.0 33

Reuse
● Aspects of reusability

– Inheritance and composition
– delegation
– Inheritance and parametrized types
– Designing for Change
– Internal Reuse – with loose coupling
– Toolkits – e. g. lists, stream library
– Frameworks

● content often concrete special examples of Design
Pattern

03/12/07 Uwe Gühl, Software Engineering DP v1.0 34

Reuse
● Extract: What is the difference between Design

Pattern and Frameworks?
– Design Patter are abstract descriptions of solutions,

so many different implementations are possible
– Frameworks could not implement all combinations

of design pattern, so frameworks content some
realized examples of design pattern

– Code generators could support the use of design
pattern

03/12/07 Uwe Gühl, Software Engineering DP v1.0 35

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Generation of an object by specifying a class

explicitly
– Future Changes are complicated to be realized
– Idea: Create objects indirectly
– Abstract Factory, Factory Method, Prototype

03/12/07 Uwe Gühl, Software Engineering DP v1.0 36

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Dependence on specific operations

– Specifying a concrete operation gives only one way
to satisfy a request

– Idea: Avoid hard-coded requests
– Chain of Responsibility, Command

03/12/07 Uwe Gühl, Software Engineering DP v1.0 37

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Dependence to Hardware and Software

platform
– platform independent software is difficult to port and

to maintain
– Idea: Limit platform dependency
– Abstract Factory, Bridge

03/12/07 Uwe Gühl, Software Engineering DP v1.0 38

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Dependence on object representations or

implementations
– If Clients have to „know too much“ about objects, a

cascade of changes have to be done if one object is
going to be changed

– Idea: „Information hiding“
– Abstract Factory, Bridge, Memento, Proxy

03/12/07 Uwe Gühl, Software Engineering DP v1.0 39

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Algorithm dependencies

– New, better, and faster algorithm should be usable
easily during development

– Idea: Isolation of algorithms from using
– Builder, Iterator, Strategy, Template Method,

Visitor

03/12/07 Uwe Gühl, Software Engineering DP v1.0 40

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Tight coupling

– Tight coupled classes could not be reused in
isolation. An update or deletion of such a class is
very expensive

– Idea: Loose Coupling
– Abstract Factory, Bridge, Chain of

Responsibility

03/12/07 Uwe Gühl, Software Engineering DP v1.0 41

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Extending functionality by subclassing

– Dependencies in the class hierarchy make
extensions difficult

– Idea: Flexible Extension with composition
– Bridge, Chain of Responsibility, Composite,

Decorator, Observer, Strategy

03/12/07 Uwe Gühl, Software Engineering DP v1.0 42

Reuse

Possible reasons for a redesign [pp. 24 GHJ+95]
● Inability to alter classes conveniently

– Classes are in a commercial library, but
modification is necessary

– Idea: „Workaround“
– Adapter, Decorator, Visitor

