Software Engineering

Lesson Design Pattern 01
Factory Method, Abstract Factory, Builder
v1.0b

Uwe Guhl

yﬂi

|
Winter 2007/ 2008

Contents

* Factory Method
* Abstract Factory

 Builder

» Difference between Abstract Factory and
Builder

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 2

Factory Method

* Intent: Define an interface for creating an
object, but let subclasses decide which class to

instantiate.
Factory Method lets a class defer instantiation

to subclasses.
— known as “Virtual Constructor” as well

 Motivation

- Frameworks use abstract classes to define and
manage relationships between objects

- A framework is also responsible to create such
objects

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 3

Factory Method

* |Introduction

- Application framework with two kinds of documents
resulting in two key abstractions

* Application
 Document

— Clients work with concrete subclasses to realize
client specific implementations

* A Drawing application would need
- DrawingApplication
- DrawingDocument

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 4

Factory Method

* |Introduction

- The application is responsible for the documents
and creates them on demand (e. g. with calling
,open® or ,New")

- Problem: Application knows when, but not which
kind of subclass of Document to instantiate

 Framework has to instantiate classes but knows only Q&
abstract classed

- |ldea: Encapsulation of the Know-how, which
Document subclass to instantiate, out of the
framework

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 5

Factory Method

* |Introduction

Document |<——<> Application

open() createDocument()
close() newDocument() ~. ==
save() openDocument() “~.| | Document doc = createDocument () ;
revert() "N docs.add (doc) ;
A /\ doc.open () ;
MyDocument K------- MyApplication

createDocument() . _

" return new MyDocument \

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 6

Factory Method

* |Introduction

- Subclasses of the Application overwrite the
method CreateDocument, to return the fitting
Document-Subclass

- As soon the subclass of the Application is
Instantiated, this subclass could instantiate the
application specific documents, and it has nothing
to know about this class.

- ,CreateDocument” is a ,FactoryMethod",
because it is responsible for the creation of an
object

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b

Factory Method

® Stru Ctu '@ - Defines the interface of the - Declares the ,FactoryMethod()",
objects, which could be returning a product object
created by the factory « could call the Factory Method to

generate a product object

N 4
Product Creator
/\
factoryMethod()
anOperation() -~_
product = factoryMethod() \
ConcreteProduct < - - - A ConcreteCreator

A

factoryMethod() - _
’\ " return new ConcreteProduct \

* Implements the
product interface

» Overwrites ,FactoryMethod(),
to return an instance of the
ConcreteProduct

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b g

Factory Method

e Collaboration

— Creator relies on its subclasses to define the
factory method so that it returns an instance of the
appropriate ConcreteProduct

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 9

Factory Method

 Consequences

+ Application specific classes don't have to bind in

code, communication is only with the Product
interface necessary

— Maybe clients need subclasses of the Creator class

only to be able to create a specific ConcreteProduct
object

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 10

Factory Method

 Consequences

- Offers a ,hook” for subclasses
Factory method offers for subclasses a connection
to make extended versions of an object possible
Example:

 Document defines a factory method ,CreateFileDialog”

« MyDocument defines an application specific
,CreateFileDialog”

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 11

Factory Method

 Consequences

— Could connect parallel class hierarchies
Example: Delegation of object manipulation of
graphical figures

Manipulator < Client > Figure
downclick() createManipulator()
drag()
upclick() JAN

JAN

— [
TextManiobulatol <Kc - - --=-=-=-=-=-=--=--—-—-——————+ TextEiaure

LineManipulator K----------------—-3----+ LineFigure
downcli createMgd
dra : :
upcslgisz)k() g?{;’z:’r(‘f"c‘(() createManipulator()

upclick()

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 12

Factory Method

* I[mplementation

- Two philosophies in the use of the factory method
pattern:

» Creator offers as abstract class no implementation of the
factory method, that it declares
- Subclasses are necessary to define an implementation

» Creator is a concrete class and offers a standard
iImplementation for the factory method (Abstract classes
with standard implementation are unusual)

- Use of the factory method because of flexibility
reasons

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 13

Factory Method

* |[mplementation

- Parameterized factory methods
The factory method generates depending on
delivered parameter different kinds of Products.
Example out of the Unidraw graphical editing
framework:

» Creator with factory method Create(productid)

* Productld specifies the class to create
e Save: (1) Write productld

)
:(1) Read productid

2) Framework calls create(productld) = constructor
3)

Call of a read method for instance variables
25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 14

Abstract Factory

* Intent: Provide an interface for creating families
of related or dependent objects without
specifying their concrete classes

 Motivation
- GUI for different Look and Feel standards

- |dea

 abstract WidgetFactory class, offering an interface for
every kind of widget

* Subclasses implement widgets

* Return values of corresponding operations are widget
objects

15

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b

Abstract Factory

 [ntroduction Example

MyApplication

Window <
WidgetFactory < ﬁE
createScrollbar() :
createWindow() XWindow MSWindow
/\ A A
I ——————————— ——
I Scrollbar <—

createWindow() : createWindow() XScrollbar MSScrollbar

1
1
iVISWindowsFactory— -;‘ XWindowsFactory**i
1
createScrollbar() Il createScrollbar() : [
1
1
1

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 16

Abstract Factory

The only place, where the concrete
implementation class is named.

e |ntroduction Example Replacing ,X‘ with ,MS*‘ would change

C d all window elements automatically
ode to MS-Windows Look&Feel.

public class MyApplication {
public Window buildWindow () {
Window myWindow;

WidgetFactory factory = new XWindowsFactory () ;
window = factory.createWindow() ;

window.addScrollbar (factory. createScrollbar())
return window;

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 17

Abstract Factory

e Structure | Client

v AbstractProductA [<—
AbstractFactory
I I
teProductA
ﬁ?ﬁitﬁpﬁgdﬂgmﬁg -> ProductA2 ProductA1 [

I
|
|
|
I : AbstractProductB |<—
:
|
|
|

R

ConcreteFactory1 ~!| ConcreteFactory2 [7\
|
createProductA() " createProductA() | |
greateProduciB() 1| createProductB() - > ProductB2 | | ProductB1 -
|
|

AbstractFactory declares the interface to create abstract product objects.
ConcreteFactory implements the operations to generate concrete products
AbstractProduct declares the common interface for a product

ConcreteProduct implements the AbstractProduct interface for a concrete product
Client uses only the interfaces declared by AbstractFactory and AbstractProduct(s)

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 18

Abstract Factory

() Exa m p I e CarPartFactory

makeCar()

makeBody()

makeEngine() C

ar
JAN
| |
MercedesCar BMWCar

MercedesFactory BMWFactory
makeCar() makeCar() *,
makeBody()\\, makeBody()\\,
makeEnging()\ makeEnging{)

LY Yy
Vo Yy

Vo A
\ \ |return new MercedesCar();\ ', | return new BMWCar();

\ \ &‘

\ P
v [return new MercedesBody(});: | return new BMWBody()

\ \‘ P
return new MercedesEnginel); return new BMWEngine();

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 19

Abstract Factory

« Example — Code

public class CarAssembler ({
public Car assembleCar () {
Car car;

Factory factory = new MercedesFactory ()
car = factory.makeCar () ;

car .addEngine (factory.makeEngine()) ;
car.addBody (factory.makeBody ()) ;

return car;

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 20

Abstract Factory

 Consequences

+ Concrete classes are isolated
The names of the product classes do not appear in
client code

+ Exchanging of product families easy

The name of the concrete factory appears only once
In the application — where it' instantiated

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 21

Abstract Factory

 Consequences

+ Consistency of products gets supported:
The creation of products with the factory avoids, that
a client creates products from different families at the
same time by accident
(Example: XWindow with MSScrollbar or
MercedesCar with BMWENgine).

— Support of new products (Car respectively Window
subclasses) is complex
The interface of the abstract factory has to be

adapted
- The abstract factory fixes the set of products which

could be generated

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 22

Abstract Factory

* I[mplementation

- Factories as Singletons

* If an application needs only one instance of a
ConcreteFactory

— Generation of products

» ConcreteFactory uses therefore often patterns

- FactoryMethod
with product depending overriding

- Prototype
Instead of using (many) subclasses, ConcreteFactory gets
initialized with a prototypical instance

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 23

Builder

* Intent: Separate the construction of a complex
product from its representation so that the same
construction process can create different
representations

 Motivation

- Example: Parsing of a document in RTF (Rich Text
Format) and converting in another format (ASCII,
HTML or a GUI-Text-Widget) — the number of
possible conversions is not limited.

- ldea
» Parser uses a textConverter object to perform conversion

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 24

Builder

while (stream.hasNext ()) [
{
Token t = getNext (),
® Exal I lple if (t.getType() == CHAR)
/,/ builder.convertCharacter (t.getChar()) ;
RTFReader e else if (t.getType() == FONT)
7 builder.convertFontChange (t.getFont ()) ;
',/ else if (t.getType () == PARA)
parseRTF() s <>— } builder.convertParagraph () ;
|builder

: Builders TextConverter :
- > a
- convertCharacter(char) .
. convertFontChange(Font) .
- convertParagraph() .
E AN :
E . . :
-| ASCIlIConverter HTMLConverter TextWidgetConverter|:
convertCharacter(char) convertCharacter(char)
- Sg?Xgr(t:CI‘ifll_g)r(?(c)ter(char) convertFontChange(Font) convertFontChange(Font)| =
- convertParagraph() convertParagraph() .
. getHTMLText() getTextWidget() .

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 25

Builder

creates a complex object common abstract interface for the

() Stru Ctu re with the Builder interfaces concrete Builder Classes

/ /

v v
. builder .
Director o> Builder

construct() buildPart()
: 2\
for all objects in structure {
builder.buildPart()
Y ConcreteBuilder > Product
A
buildPart()
getResult()
» implements the Builder-interface s th
- constructs and assembles products reprelsen S de t
« delivers products compiex proauc

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 26

Builder

» Collaboration — Description

- The Client generates the Director object, which
gets configured with the desired Builder object

— Director informs the Builder, if a part of the
Product should be assembled

- Builder handles the requests of the Directors and
adds parts to the Product

- The Client gets finally the Product from the
Builder

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 27

Builder

» Collaboration — Sequence Diagram

25/02/08

:aClient

T
I
L

new ConcreteBuilder

:aConcreteBuilder

new Director(aConcreteBuilder)

A 4

[

" :aDirector |
Construct() , BuildPartA() |
BuildPartB() T
BuildPartC() ‘T
L
GetResult() -

Uwe Giihl, Software Engineering DP-01 v1.0b

28

Builder

builder CarBuilder
® Exal | |p|e CarAssemblyUl >—————> car
add4CylinderFuelEngine()
)) add6CylinderFuelEngine()
engineFuel4Cylinder() add6CylinderDieselEngine()
engineFuel6Cylinder() .
engineDiesel6Cylinder() . getAssembledCar() . _
— AN

builder.addDiesel6Cylinder() HilBakiicanisicomplet

/I then return car

this.car.addEngine(new
Mercedes4CylinderFuelEngine())

25/02/08

MercedesBuilder

\‘add4CyIinderFueIEngine()

add6CylinderFuelEngine()
add6CylinderDieselEngine()

éétAssembIedCar()

Uwe Giihl, Software Engineering DP-01 v1.0b

BMWBuilder

add4CylinderFuelEngine()
add6CylinderFuelEngine()
add6CylinderDieselEngine()

éétAssembIedCar()

29

Builder

 Consequences

- Internal representation of the Product is variable

25/02/08

 The Builder offers the Director an abstract interface for
the construction of a Product

* The representation and internal structure of the Product
IS hidden

* The internal representation of the Product may change,
but it does not influence the Director

Uwe Giihl, Software Engineering DP-01 v1.0b 30

Builder

 Consequences
- Partitioning of the code in construction process and
iInternal representation

» Clients do not have to know about the classes
representing the internal Product structure

* Reuse is possible

— Detailed control on the Product structure by
stepwise construction

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 31

Builder

* I[mplementation
— Builder contains methods for all producible
components, ConcreteBuilder overwrite them

- Assembly and construction interface

» Builder interface has to be flexible enough, to enable the
Product construction for all ConcreteBuilder

* |Is Product as return value reasonable (RTF-Reader) or
is a return of part nodes better?
Example: Creation of a maze: Door between two rooms

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 32

Abstract Factory and Builder
Comparison

* Abstract Factory

- Goal: Choice out of different product families,
independent if the products are complex or simple

- The factory gets the request, to create and return a
complete individual component

- The client may add components to a complex
product, but the factory does not know (and not
care)

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 33

Abstract Factory and Builder
Comparison

* Builder
- Goal: Creation of a complex object step-by-step

- If the Builder should create an individual
component, he does not return, but adds it to an
internal encapsulated product

- Not until the end, if all parts are added, the Builder
might be asked for the complete product

* Abstract Factory and Builder could work
together for a family of multiple complex
products

25/02/08 Uwe Giihl, Software Engineering DP-01 v1.0b 34

