
Lesson Design Pattern 01
Factory Method, Abstract Factory, Builder

v1.0b

Uwe Gühl

Winter 2007/ 2008

Software Engineering

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 2

Contents
● Factory Method
● Abstract Factory
● Builder
● Difference between Abstract Factory and

Builder

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 3

Factory Method
● Intent: Define an interface for creating an

object, but let subclasses decide which class to
instantiate.
Factory Method lets a class defer instantiation
to subclasses.
– known as “Virtual Constructor” as well

● Motivation
– Frameworks use abstract classes to define and

manage relationships between objects
– A framework is also responsible to create such

objects

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 4

Factory Method
● Introduction

– Application framework with two kinds of documents
resulting in two key abstractions

● Application
● Document

– Clients work with concrete subclasses to realize
client specific implementations

● A Drawing application would need
– DrawingApplication
– DrawingDocument

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 5

Factory Method
● Introduction

– The application is responsible for the documents
and creates them on demand (e. g. with calling
„Open“ or „New“)

– Problem: Application knows when, but not which
kind of subclass of Document to instantiate

● Framework has to instantiate classes but knows only
abstract classed

– Idea: Encapsulation of the Know-how, which
Document subclass to instantiate, out of the
framework

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 6

Factory Method

Application

createDocument()
newDocument()
openDocument()

Document

open()
close()
save()
revert()

MyApplication

createDocument()

MyDocument

return new MyDocument

*

● Introduction

Document doc = createDocument();
docs.add(doc);
doc.open();

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 7

Factory Method
● Introduction

– Subclasses of the Application overwrite the
method CreateDocument, to return the fitting
Document-Subclass

– As soon the subclass of the Application is
instantiated, this subclass could instantiate the
application specific documents, and it has nothing
to know about this class.

– „CreateDocument“ is a „FactoryMethod“,
because it is responsible for the creation of an
object

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 8

Factory Method
● Structure

Product

ConcreteProduct ConcreteCreator

factoryMethod()

Creator

factoryMethod()
anOperation()

• Defines the interface of the
objects, which could be
created by the factory

• Declares the „FactoryMethod()“,
returning a product object

• could call the Factory Method to
generate a product object

• Overwrites „FactoryMethod()“,
to return an instance of the
ConcreteProduct

• Implements the
product interface

product = factoryMethod()

return new ConcreteProduct

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 9

Factory Method
● Collaboration

– Creator relies on its subclasses to define the
factory method so that it returns an instance of the
appropriate ConcreteProduct

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 10

Factory Method
● Consequences

+ Application specific classes don't have to bind in
code, communication is only with the Product
interface necessary

– Maybe clients need subclasses of the Creator class
only to be able to create a specific ConcreteProduct
object

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 11

Factory Method
● Consequences

– Offers a „hook“ for subclasses
Factory method offers for subclasses a connection
to make extended versions of an object possible
Example:

● Document defines a factory method „CreateFileDialog“
● MyDocument defines an application specific

„CreateFileDialog“

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 12

Factory Method
● Consequences

– Could connect parallel class hierarchies
Example: Delegation of object manipulation of
graphical figures

TextFigure

createManipulator()

TextManipulator

downclick()
drag()
upclick()

downclick()
drag()
upclick()

Manipulator

LineFigure

createManipulator()

Figure

createManipulator()
...

Client

LineManipulator

downclick()
drag()
upclick()

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 13

Factory Method
● Implementation

– Two philosophies in the use of the factory method
pattern:

● Creator offers as abstract class no implementation of the
factory method, that it declares
 Subclasses are necessary to define an implementation

● Creator is a concrete class and offers a standard
implementation for the factory method (Abstract classes
with standard implementation are unusual)
 Use of the factory method because of flexibility
reasons

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 14

Factory Method
● Implementation

– Parameterized factory methods
The factory method generates depending on
delivered parameter different kinds of Products.
Example out of the Unidraw graphical editing
framework:

● Creator with factory method Create(productId)
● ProductId specifies the class to create
● Save: (1) Write productId

(2) Write instance variables
● Read:(1) Read productId

(2) Framework calls create(productId)  constructor
(3) Call of a read method for instance variables

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 15

Abstract Factory
● Intent: Provide an interface for creating families

of related or dependent objects without
specifying their concrete classes

● Motivation
– GUI for different Look and Feel standards
– Idea

● abstract WidgetFactory class, offering an interface for
every kind of widget

● Subclasses implement widgets
● Return values of corresponding operations are widget

objects

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 16

Abstract Factory

WidgetFactory

createScrollbar()
createWindow()

Window

MSWindowsFactory

createScrollbar()
createWindow()

XWindowsFactory

createScrollbar()
createWindow()

Scrollbar

MSWindowXWindow

MSScrollbar

MyApplication

XScrollbar

● Introduction Example

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 17

Abstract Factory
The only place, where the concrete
implementation class is named.
Replacing ‚X‘ with ‚MS‘ would change
all window elements automatically
to MS-Windows Look&Feel.

public class MyApplication {
 public Window buildWindow() {
 Window myWindow;
 WidgetFactory factory = new XWindowsFactory();
 window = factory.createWindow();
 window.addScrollbar(factory. createScrollbar());
 return window;
 }
}

● Introduction Example
Code

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 18

Abstract Factory

AbstractFactory declares the interface to create abstract product objects.

AbstractFactory

createProductA()
createProductB()

AbstractProductA

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

AbstractProductB

ProductA1ProductA2

ProductB1

Client

ProductB2

Client uses only the interfaces declared by AbstractFactory and AbstractProduct(s)
ConcreteProduct implements the AbstractProduct interface for a concrete product

ConcreteFactory implements the operations to generate concrete products
AbstractProduct declares the common interface for a product

● Structure

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 19

Abstract Factory
● Example CarPartFactory

makeCar()
makeBody()
makeEngine()

MercedesFactory BMWFactory

makeCar()
makeBody()
makeEngine()

makeCar()
makeBody()
makeEngine()

return new MercedesCar();

return new MercedesBody();

return new MercedesEngine();

return new BMWCar();

return new BMWBody();

return new BMWEngine();

Car

MercedesCar BMWCar

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 20

Abstract Factory
● Example – Code
public class CarAssembler {

public Car assembleCar() {
Car car;
Factory factory = new MercedesFactory();
car = factory.makeCar();
car.addEngine(factory.makeEngine());
car.addBody(factory.makeBody());
. . .
return car;

}
}

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 21

Abstract Factory
● Consequences
+ Concrete classes are isolated

The names of the product classes do not appear in
client code

+ Exchanging of product families easy
The name of the concrete factory appears only once
in the application – where it' instantiated

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 22

Abstract Factory
● Consequences
+ Consistency of products gets supported:

The creation of products with the factory avoids, that
a client creates products from different families at the
same time by accident
(Example: XWindow with MSScrollbar or
MercedesCar with BMWEngine).

– Support of new products (Car respectively Window
subclasses) is complex
The interface of the abstract factory has to be
adapted
 The abstract factory fixes the set of products which
could be generated

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 23

Abstract Factory
● Implementation

– Factories as Singletons
● If an application needs only one instance of a

ConcreteFactory
– Generation of products

● ConcreteFactory uses therefore often patterns
– FactoryMethod

with product depending overriding
– Prototype

Instead of using (many) subclasses, ConcreteFactory gets
initialized with a prototypical instance

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 24

Builder
● Intent: Separate the construction of a complex

product from its representation so that the same
construction process can create different
representations

● Motivation
– Example: Parsing of a document in RTF (Rich Text

Format) and converting in another format (ASCII,
HTML or a GUI-Text-Widget) – the number of
possible conversions is not limited.

– Idea
● Parser uses a textConverter object to perform conversion

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 25

Builder
● Example

while (stream.hasNext())
{
 Token t = getNext();
 if (t.getType() == CHAR)
 builder.convertCharacter(t.getChar());
 else if (t.getType() == FONT)
 builder.convertFontChange(t.getFont());
 else if (t.getType() == PARA)
 builder.convertParagraph();
}

convertCharacter(char)
convertFontChange(Font)
convertParagraph()

TextConverter

builder

RTFReader

parseRTF()

convertCharacter(char)
getASCIIText()

ASCIIConverter

convertCharacter(char)
convertFontChange(Font)
convertParagraph()
getHTMLText()

HTMLConverter

convertCharacter(char)
convertFontChange(Font)
convertParagraph()
getTextWidget()

TextWidgetConverter

Builders

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 26

Builder
● Structure

for all objects in structure {
builder.buildPart()

}

Director

buildPart()

Builderbuilder

ConcreteBuilder

buildPart()
getResult()

Product

construct()

common abstract interface for the
concrete Builder Classes

creates a complex object
with the Builder interfaces

represents the
complex product

• implements the Builder-interface
• constructs and assembles products
• delivers products

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 27

Builder
● Collaboration – Description

– The Client generates the Director object, which
gets configured with the desired Builder object

– Director informs the Builder, if a part of the
Product should be assembled

– Builder handles the requests of the Directors and
adds parts to the Product

– The Client gets finally the Product from the
Builder

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 28

Builder
● Collaboration – Sequence Diagram

:aClient

:aDirector

:aConcreteBuildernew ConcreteBuilder

new Director(aConcreteBuilder)

Construct()

GetResult()

BuildPartA()

BuildPartB()

BuildPartC()

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 29

Builder
● Example CarAssemblyUI

add4CylinderFuelEngine()
add6CylinderFuelEngine()
add6CylinderDieselEngine()
...
getAssembledCar()

CarBuilder
builder

engineFuel4Cylinder()
engineFuel6Cylinder()
engineDiesel6Cylinder()
...

add4CylinderFuelEngine()
add6CylinderFuelEngine()
add6CylinderDieselEngine()
...
getAssembledCar()

MercedesBuilder

add4CylinderFuelEngine()
add6CylinderFuelEngine()
add6CylinderDieselEngine()
...
getAssembledCar()

BMWBuilder

builder.addDiesel6Cylinder()

car

// look, if car is complete
// then return car

this.car.addEngine(new
 Mercedes4CylinderFuelEngine())

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 30

Builder
● Consequences

– Internal representation of the Product is variable
● The Builder offers the Director an abstract interface for

the construction of a Product
● The representation and internal structure of the Product

is hidden
● The internal representation of the Product may change,

but it does not influence the Director

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 31

Builder
● Consequences

– Partitioning of the code in construction process and
internal representation

● Clients do not have to know about the classes
representing the internal Product structure

● Reuse is possible
– Detailed control on the Product structure by

stepwise construction

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 32

Builder
● Implementation

– Builder contains methods for all producible
components, ConcreteBuilder overwrite them

– Assembly and construction interface
● Builder interface has to be flexible enough, to enable the

Product construction for all ConcreteBuilder
● Is Product as return value reasonable (RTF-Reader) or

is a return of part nodes better?
Example: Creation of a maze: Door between two rooms

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 33

Abstract Factory and Builder
Comparison

● Abstract Factory
– Goal: Choice out of different product families,

independent if the products are complex or simple
– The factory gets the request, to create and return a

complete individual component
– The client may add components to a complex

product, but the factory does not know (and not
care)

25/02/08 Uwe Gühl, Software Engineering DP-01 v1.0b 34

Abstract Factory and Builder
Comparison

● Builder
– Goal: Creation of a complex object step-by-step
– If the Builder should create an individual

component, he does not return, but adds it to an
internal encapsulated product

– Not until the end, if all parts are added, the Builder
might be asked for the complete product

● Abstract Factory and Builder could work
together for a family of multiple complex
products

