
Lesson Design Pattern
Strategy

v1.0a

Uwe Gühl

Winter 2007/ 2008

Software Engineering

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 2

Strategy
● Intent:

– Define a family of algorithms, encapsulate each
one, and make them interchangeable.
Strategy lets the algorithm vary independently from
clients that use it

– known as “Policy” as well
– is a Behavioral Pattern
– It describes a way to abstract out often changing

code from stable code. Strategy encapsulates this
often changing code so that it can be used or
interchanged easily

– It encapsulates an algorithm inside a class

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 3

Strategy
● Motivation

There exist many variants to save data for
different applications, e. g.
– File compression (zip, rar)
– Video data compression (MPEG, AVI, Quicktime, ...)
– Savings of image data (BMP, GIF, JPEG, ...)
– Save files in different formats
Additional examples
– Evaluation strategy for multiple choice tests
– Different line-breaking strategies to display text data

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 4

Strategy
● Idea

– Outsourcing of the variants of an algorithm in own
classes, all with the same interface to an application

Source: robgarrett.com

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 5

Strategy
● Structure Context uses the interface

to call the current used
ConcreteStrategy.

• Declares the interface for all
supporting algorithms.

• is configured with a
ConcreteStrategy object

• maintains a reference to a
Strategy object

• may define an interface that
lets Strategy access
its data

• implement the
algorithm using the
Strategy Interface

Context

contextInterface()
executeAlgorithm()

ConcreteStrategyB ConcreteStrategyC

Strategy

algorithmInterface()

strategy

algorithmInterface() algorithmInterface()

strategy.algorithmInterface()

ConcreteStrategyA

algorithmInterface()

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 6

Strategy
● Collaboration

– Strategy and Context collaborate to implement the
chosen algorithm. Context could

● either pass all necessary data for the algorithm
● or pass itself, so that Strategy could call back.

– Context could pass requests from its clients to its
strategy.
Often exists a family of ConcreteStrategy classes
a client could choose from.

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 7

Strategy
● Example

Picture

save()

BMPFormat GIFFormat

FileFormat

save(Picture)

fileFormat

savePicture() savePicture()

fileFormat.save(this)

JPEGFormat

savePicture()

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 8

Strategy
● Applicability

Use the Strategy Pattern when
– many similar classes differ only in behavior.

Strategy could configure a specific class with one of
many possible behaviors

– different variants of an algorithm are needed. For
example to offer different storage or time properties

– an algorithm needs data, that clients should not
know about. These data could be associated to
particular strategies.

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 9

Strategy
● Applicability

Use the Strategy Pattern when
– a class has different behaviors, structured over

many complex condition levels.
Instead of administrating many different conditions,
the use of own strategy classes is easier to handle

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 10

Strategy
● Consequences
+ Families of related algorithms get extracted and

combined for potential reuse
+ More flexible alternative to subclassing of the context

object. A dynamical configuration offers variability for
different algorithms or behaviour. With Strategy it's
easier to understand, to change, and to extend

+ Alternative to conditions (if else, switch)
The choice of implementation alternatives of the
same behaviour could be made with the Strategy
Pattern instead of many condition statements

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 11

Strategy
● Consequences
+ Clients could choose among strategies
 Clients must be aware of different strategies
– Communication overhead between Strategy and

Context, e. g. if a complex ConcreteStrategy needs
more information from Context then a simple
ConcreteStrategy.
Reason: The interface has to fit for all strategies

– Increased number of objects
A workaround could be implementing strategies as
stateless objects that contexts can share
( Flyweight Pattern)

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 12

Strategy
● Implementation

– Definition of Strategy and Context interfaces;
possible strategies:

● Pass related data as parameter
● Context passes itself as parameter (“this”)
● Two way reference with closer coupling

– Strategy as option
The default behaviour is described in context.
Only if a strategy object is available, an external
algorithm is used.

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 13

Strategy
● Known Uses

– java.util.zip package
CheckedInputStream / CheckedOutputStream use
different checksum calculation algorithms*

● CRC32 – very reliable, but the algorithm is
computationally expensive

● Adler-32 – almost as reliable as CRC32, but the
calculation of the checksum can be done more quickly
than using CRC32

* A checksum could be used to ensure a file was correctly transferred. Typically, before a file is
transferred, you calculate the checksum for the file. Once it has been received, you calculate the
checksum again. If the two values match, the file has been transferred correctly.
If not, an error occurred during the transmission.
(Source: http://people.westminstercollege.edu/faculty/ggagne/may2006/lab7/index.html)

26/12/07 Uwe Gühl, Software Engineering DP-02 v1.0a 14

Strategy
● Related Patterns

– State Pattern
The class diagrams look similar, but the intension of
the patterns is different

● The State Pattern defines one particular implementation
for changing behaviors that differ from one state to
another.

● The Strategy Pattern defines a way to have many,
separately encapsulated algorithms that are
interchangeable.

– Flyweight
Strategy objects often make good flyweights

