
Strategy Pattern Tutorial

Definition

Define a family of algorithms, encapsulate, and make them interchangeable.

Strategy lets the algorithm vary independently from clients that use it

(http://en.wikipedia.org/wiki/Strategy_pattern)

Simply Speaking

 Strategy is what we group the many algorithms that do the same things and

make it interchangeable at run-time

UML Example #1

 The UML below illustrates the idea of Strategy pattern.

• It means that Context class has the Strategy object.

• And ConcreateStrategyA, ConcreteStrategyB is the choice of

algorithm that does the same purpose.

• When you used at runtime, you can switch between

ConcreateStrategyA and ConcreteStrategyB to use.

UML Example #2

• This UML, We want to set the layout for the GUI Components. So, in

order to set the layout, we have 3 choices of setting layout which are

By SmartBoard Team

o FlowLayout

o BorderLayout

o CardLayout

So at run-time, you can be able to switch each type of layout.

UML Example #3 – Let’s try…

 So for more understanding, let’s see Sort Example. Let’s try to implement by

yourself.

 Just start from understand the purpose and its UML first, and then try to code in

Eclipse or your IDE.

Purpose: Write the sort program which support multiple sort algorithms, and make it

changeable at runtime

 package Strategy;

public class ClientSort

{

 public static void main(String[] args)

 {

 // Sort for AscendingSorter

ListContext listContext = new ListContext(new

AscendingSorter());

 int[] listNumber = new int[5];

 listNumber[0] = 9;

 listNumber[1] = 1;

 listNumber[2] = 5;

 listNumber[3] = 2;

 listNumber[4] = 8;

 listNumber = listContext.sorting(listNumber);

 System.out.println("Ascending Sorting");

 listContext.show(listNumber);

 // Sort for DescendingSorter

 listContext.setSorter(new DescendingSorter());

 listNumber = listContext.sorting(listNumber);

 System.out.println("Descending Sorting");

 listContext.show(listNumber);

 }

}

package Strategy;

public class ListContext

{

 private Sorter sorter;

 public ListContext(Sorter sorter)

 {

 this.sorter = sorter;

 }

 public void setSorter(Sorter sorter)

 {

 this.sorter = sorter;

 }

public int[] sorting(int[] listNumber)

 {

 return this.sorter.sort(listNumber);

 }

 /**

 * Printing for show the result.

 *

 */

 public void show(int[] listNumber)

 {

package Strategy;

public interface Sorter

{

public int[] sort(int[] listNumber);

}

package Strategy;

public class AscendingSorter implements

Sorter

{

public int[] sort(int[] listNumber)

 {

 // add ascending Sort Algorithm

 return listNumber;

 }

}

package Strategy;

public class DescendingSorter implements

Sorter

{

public int[] sort(int[] listNumber)

 {

 // add descending Sort Algorithm

 return listNumber;

 }

