Software Engineering

Lesson Design Pattern
Decorator
v1.0

Uwe Giihl
iy

Fall 2007/ 2008

Decorator

e |[ntent:

— Decorators modify individual objects dynamically

- So they offer a flexible alternative to hierarchies
with subclassing to extend functionalities of objects

- ... known as ,Wrapper" as well
- ... Is a Structural Pattern

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 2

Decorator

* Motivation
Add to separate objects additional
responsibilities — not to the entire class

» Typical example: GUI with additional properties
like

— additional border
— additional scrolling

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 3

Decorator

e |deas

— Possible solution 1: Inheritance
Problem: Inheriting a border means that every
Instance of a subclass has a border

« Static approach not flexible

e Client can not determine, how and when a border should
be set on a component

- Possible solution 2: Including the component in
another object, that adds a border
The including component is named Decorator.

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 4

Decorator

How to realize?

 Example

T

B applics lers wauld barsi|
i usig abpels o miel ey
aepec] Al lher Lischiaasily Bl

A ke daiign Sapeaact woukl be
piishifiteab saiparaE

aBorderDecorator

Far paarrpls, meal dosumant ag-
fors. madulbarizs Fer gl orinsl-
firegy el echireg faclliss b s
aalgnl, Howsrase, [y irwariakly
g shar of ijarg chisss
inpreaanl wach chamcks: aml
graphical umanl i e dos imsn|
Ll 3 e proviced Raaiblly
al [Il Bl it
apphsason, Tael aml guphics
ek b Drephad nike iy wik

o | e

ascrollDecorator -

aTextView -

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 5

Decorator

aBD :BorderDecorator

o Examp|e T e A °
— The BorderDecorator aBD v

aSD :ScrollDecorator

behaves from the application .
point of view like a scrollable |swirostion=..
TextView with border

v

~ Actually the behaviour is distributed R
among three objects, that “"decorate”
the basic functionality
— Typical use: aT = new TextView():;
aSD = new ScrollDecorator (aT);
aBD = new BorderDecorator (aT);

aBD.draw () ;

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 6

Decorator

 Example
— Alternative:

VisualComponent vC = new TextView();
vC = new ScrollDecorator (vC);

vC = new BorderDecorator (vC) ;
vC.draw () ;

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 7

Decorator

 Consideration

- To offer the same accessibility

 the decorator and
* the component

need the same interface so that clients have
transparent access

— The decorator sends requests to the component
and executes additional activities
(e. g. drawing of a border)

— Recursive use of multiple decorators allows
dynamical adding of functionality

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 8

Decorator

VisualComponent |< component
 Example
draw()
2\
TextView Decorator K>—
draw() draw() o._
/\ \\\ p
Slcomponent.draw ()
SrollDecorator BorderDecorator
scrollPosition borderWidth
draw() draw) ©
scrollTo() Q\
defineClippingRegion() drawBorder()\\
\‘ \\\ k

\ « |// from Decorator

super.draw () ;
this.drawBorder (borderWidth) ;

// from Decorator
super.draw () ;
this.scrollTo(scrollPosition);
this.defineClippingRegion () ;

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 9

 Example -
continued

- |If called

aBD.draw () ;

Decorator

aBD :BorderDecorator

component= aSD °
borderWidth = ...

v

aSD :ScrollDecorator

Component = aT ®
scrollPosition = ...

following methods get executed

BorderDecorator.draw () ;
Decorator.draw () ;
ScrollDecorator.draw () ;
Decorator.draw () ;
TextView.draw () ;

19/12/07

Uwe Giihl, Software Engineering DP-03 v1.0

v

aTl: TextView

10

Defines the abstract interface for

Decorator

responsibilities could be added
dynamically
L

. Stru Ctu re Component < component

» The concrete implementation of
Component defines an object, operation()
to which additional

responsibilities cauld be added JAN
Q\A « Has a reference to a

Component object and
ConreteComponent Decorator <>— inherits all the interfaces

— of Component

operation() operation() o

/\ “ p
| component .operation ()

ConcreteDecoratorA ConcreteDecoratorB

addedState
_ operation() Q
operation() addedBehavior() \

71
A \
/ \\\ // from Decorator

. : e super.operation () ;
ﬁgﬁﬂ}%ﬁﬁffngb”meSto this.addedBehavior () ;

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 11

Decorator

e Collaboration

- The Decorator forwards requests to its
Component object

- Optional additional operations could be added
before or after forwarding the request

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 12

Decorator

* Applicability
Use the Decorator Pattern

- to add dynamically and transparent new
responsibilities to specific objects

— for responsibilities that can be withdrawn

- when extension by subclassing is inefficient
For example, if a big number of extensions is
possible, what would produce a high numbers of
subclasses to support every combination

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 13

Decorator

 Consequences
+ More flexibility than static inheritance

 Decorators make it possible to add and remove at
runtime responsibilities

* \With inheritance new classes would be needed for
each additional responsibility (e. g.
BorderedScrollable TextView, BorderedTextView, ...)

= more classes
= more complexity
= mixing of responsibilities

* Properties could be used more often, for example a
double border for a widget with 2 BorderDecorators

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 14

Decorator

 Consequences
+ Avoids feature laden classes high up in the hierarchy

e Instead of using an ,all-in-one device suitable for
every purpose” class a simple class is sufficient with
the idea to add functionality incrementally with
Decorator objects if needed

» Adding functionality with the combination of simple
pieces

» Easy independent definitions of new Decorators

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 15

Decorator

 Consequences
O A Decorator and its Component are not identical!

* A Decorator acts like a transparent wrapper

« Concerning the object identity: A decorated
Component is not identical to the Component itself
-> Attention with referencing

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 16

Decorator

 Consequences
— Many small objects

* Result of using the Decorator is often that many little
similar looking objects hang around in your system

* The objects differ only in the way they are
Interconnected, not in their class and not in the values
of their attributes

e Hard to learn and debug — but easy to customize if
you understand the context

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 17

Decorator

* I[mplementation

- Interface conformance

* The interfaces of Decorator and Component classes
must be similar

 ConcreteDecorator have to inherit from a common class
(at least in C++)

« A Component must not know anything about their
Decorators, that's why a reference from a Component to
a Decorator makes no sense

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 18

Decorator

* I[mplementation

- Omitting the abstract Decorator

* |t's possible to do without the abstract Decorator class, if
only one responsibility should be added — e. g. if a class
hierarchy already exists

* The responsibility of the Decorator to forward requests
to Components could be merged to ConcreteDecorator

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 19

Decorator

* I[mplementation

- Keep Component classes lightweight

» Goal: Simple interface of the Component

- All classes in this pattern inherit from the Component
- Risk: Subclasses contain functionality they do not need!
« Job of the Component. Definition of the interface not

storage of data!
—> Storage of data should be done in subclasses

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 20

Decorator

* I[mplementation

- Changing the ,skin” of an object or changing the
,guts” of an object?

* Decorator is an additional skin around an object that
should change its behaviour

 Alternative: Change of the inner parts (e. g. with the
Strategy Pattern) — recommended, if the Component
class tends to get too big and complex

* Decide: When to use Decorator - when to use Strategy

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 21

Decorator

* Implementation
- Changing the ,skin® of an object?

aD1 :Decorator

component ————> aD2 :Decorator

component ° > aC :Component

extension of functionality by Decorator

- ... or changing the ,guts” of an object?

aC :Component

strategies *—— > aS1 :Strategy

next ® > aS2 :Strategy

next

extension of functionality by Strategy
19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 22

Decorator

 Known Uses (some examples out of [GHJ+995])

- Many object oriented GUI toolkits use decorators to
establish graphical utilities, especially graphical
borders for widgets

e Interviews

o« ET++

* ObjectWorks\Smalltalk class library
* HotDraw: DecoratorFigure

- Non graphical examples
e« ET++ Streaming-Classes
 Filter architecture in Struts Web application framework

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 23

Decorator

o Known Uses OutputStream |«——component
VAN
\
- - Component
- Streaming classes in Java ™"
\
\
\
FileOutputStream Fi_lterOutputStream <—
N \\ N /\\
ConcreteComponent\ \ | Decorator
A \ \
\ \ \
\ \ \
DeflaterOutputStream| DataOutputStreﬁ(n \BufferedOt‘ftputStream
N 7 i
ZF \ \\ /\ \
\ \ /\ \
\ \/ \ |
ZIPOutputStream GZIPOutputStream | _ \ A v\
<— > \ / N7 T =
_______ \\ \ //// \\\
——— >0/ \
ConcreteDecorator ¢ Decorator)

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 e - -=" 24

Decorator

e Known Uses

- More applications

* Debugging Glyph from InterViews
Debugging information before and after sending requests
to components

» PassivityWrapper from VisualWorks \ Smalltalk
Possibility to control user activities to a component —
either it is allowed or disabled

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 25

Decorator

 Related Patterns

- Adapter

» A decorator changes responsibilities of an object, where
an adapter will give an object a new interface

- Composite

» A decorator is something like a degenerated composite
with only one component

« But a decorator is not intended for object aggregation
- Strategy

» A decorator changes the outer part of an object
A strategy changes the inner part of an object

19/12/07 Uwe Giihl, Software Engineering DP-03 v1.0 26

