
Lesson Design Pattern
Decorator

v1.0

Uwe Gühl

Fall 2007/ 2008

Software Engineering

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 2

Decorator
● Intent:

– Decorators modify individual objects dynamically
– So they offer a flexible alternative to hierarchies

with subclassing to extend functionalities of objects
– ... known as „Wrapper“ as well
– ... is a Structural Pattern

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 3

Decorator
● Motivation

Add to separate objects additional
responsibilities – not to the entire class

● Typical example: GUI with additional properties
like
– additional border
– additional scrolling

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 4

Decorator
● Ideas

– Possible solution 1: Inheritance
Problem: Inheriting a border means that every
instance of a subclass has a border

● Static approach not flexible
● Client can not determine, how and when a border should

be set on a component
– Possible solution 2: Including the component in

another object, that adds a border
The including component is named Decorator.

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 5

Decorator
● Example How to realize?

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 6

Decorator
● Example

– The BorderDecorator aBD
behaves from the application
point of view like a scrollable
TextView with border

– Actually the behaviour is distributed
among three objects, that “decorate”
the basic functionality

– Typical use:

aT: TextView

aSD :ScrollDecorator

Component = aT
scrollPosition = ...

aBD :BorderDecorator

component= aSD
borderWidth = ...

aT = new TextView();
aSD = new ScrollDecorator(aT);
aBD = new BorderDecorator(aT);
aBD.draw();

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 7

Decorator
● Example

– Alternative:
VisualComponent vC = new TextView();
vC = new ScrollDecorator(vC);
vC = new BorderDecorator(vC);
vC.draw();

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 8

Decorator
● Consideration

– To offer the same accessibility
● the decorator and
● the component

need the same interface so that clients have
transparent access

– The decorator sends requests to the component
and executes additional activities
(e. g. drawing of a border)

– Recursive use of multiple decorators allows
dynamical adding of functionality

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 9

Decorator
● Example

draw()

DecoratorTextView

draw()

componentVisualComponent

draw()

SrollDecorator
scrollPosition
draw()
scrollTo()
defineClippingRegion()

BorderDecorator
borderWidth

draw()
drawBorder()

// from Decorator
super.draw();
this.drawBorder(borderWidth);

component.draw()

// from Decorator
super.draw();
this.scrollTo(scrollPosition);
this.defineClippingRegion();

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 10

Decorator
● Example -

continued
– If called

following methods get executed

BorderDecorator.draw();
Decorator.draw();
ScrollDecorator.draw();
Decorator.draw();
TextView.draw();

aBD.draw();
aT: TextView

aSD :ScrollDecorator

Component = aT
scrollPosition = ...

aBD :BorderDecorator

component= aSD
borderWidth = ...

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 11

Decorator
● Structure

operation()

DecoratorConreteComponent

operation()

componentComponent

operation()

ConcreteDecoratorA
addedState

operation()

ConcreteDecoratorB

operation()
addedBehavior()

// from Decorator
super.operation();
this.addedBehavior();

component.operation()

• The concrete implementation of
Component defines an object,
to which additional
responsibilities could be added

• Defines the abstract interface for
objects, where additional
responsibilities could be added
dynamically

• Has a reference to a
Component object and
inherits all the interfaces
of Component

• Adding responsibilities to
Component

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 12

Decorator
● Collaboration

– The Decorator forwards requests to its
Component object

– Optional additional operations could be added
before or after forwarding the request

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 13

Decorator
● Applicability

Use the Decorator Pattern
– to add dynamically and transparent new

responsibilities to specific objects
– for responsibilities that can be withdrawn
– when extension by subclassing is inefficient

For example, if a big number of extensions is
possible, what would produce a high numbers of
subclasses to support every combination

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 14

Decorator
● Consequences

+ More flexibility than static inheritance
● Decorators make it possible to add and remove at

runtime responsibilities
● With inheritance new classes would be needed for

each additional responsibility (e. g.
BorderedScrollableTextView, BorderedTextView, ...)

 more classes
 more complexity
 mixing of responsibilities

● Properties could be used more often, for example a
double border for a widget with 2 BorderDecorators

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 15

Decorator
● Consequences

+ Avoids feature laden classes high up in the hierarchy
● Instead of using an „all-in-one device suitable for

every purpose“ class a simple class is sufficient with
the idea to add functionality incrementally with
Decorator objects if needed

● Adding functionality with the combination of simple
pieces

● Easy independent definitions of new Decorators

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 16

Decorator
● Consequences
 A Decorator and its Component are not identical!

● A Decorator acts like a transparent wrapper
● Concerning the object identity: A decorated

Component is not identical to the Component itself
 Attention with referencing

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 17

Decorator
● Consequences

– Many small objects
● Result of using the Decorator is often that many little

similar looking objects hang around in your system
● The objects differ only in the way they are

interconnected, not in their class and not in the values
of their attributes

● Hard to learn and debug – but easy to customize if
you understand the context

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 18

Decorator
● Implementation

– Interface conformance
● The interfaces of Decorator and Component classes

must be similar
● ConcreteDecorator have to inherit from a common class

(at least in C++)
● A Component must not know anything about their

Decorators, that's why a reference from a Component to
a Decorator makes no sense

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 19

Decorator
● Implementation

– Omitting the abstract Decorator
● It's possible to do without the abstract Decorator class, if

only one responsibility should be added – e. g. if a class
hierarchy already exists

● The responsibility of the Decorator to forward requests
to Components could be merged to ConcreteDecorator

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 20

Decorator
● Implementation

– Keep Component classes lightweight
● Goal: Simple interface of the Component

– All classes in this pattern inherit from the Component
– Risk: Subclasses contain functionality they do not need!

● Job of the Component: Definition of the interface not
storage of data!
 Storage of data should be done in subclasses

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 21

Decorator
● Implementation

– Changing the „skin“ of an object or changing the
„guts“ of an object?

● Decorator is an additional skin around an object that
should change its behaviour

● Alternative: Change of the inner parts (e. g. with the
Strategy Pattern) – recommended, if the Component
class tends to get too big and complex

● Decide: When to use Decorator - when to use Strategy

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 22

extension of functionality by Strategy

extension of functionality by Decorator

Decorator
● Implementation

– Changing the „skin“ of an object?

– ... or changing the „guts“ of an object?

aD1 :Decorator

component

aC :Component

aD2 :Decorator

component

aS1 :Strategy

next aS2 :Strategy

next

aC :Component

strategies

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 23

Decorator
● Known Uses (some examples out of [GHJ+95])

– Many object oriented GUI toolkits use decorators to
establish graphical utilities, especially graphical
borders for widgets

● Interviews
● ET++
● ObjectWorks\Smalltalk class library
● HotDraw: DecoratorFigure

– Non graphical examples
● ET++ Streaming-Classes
● Filter architecture in Struts Web application framework

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 24

Decorator

FileOutputStream

componentOutputStream

DataOutputStream BufferedOutputStream

FilterOutputStream

GZIPOutputStreamZIPOutputStream

DecoratorConcreteDecorator

Component

ConcreteComponent Decorator

DeflaterOutputStream

● Known Uses
– Streaming classes in Java

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 25

Decorator
● Known Uses

– More applications
● Debugging Glyph from InterViews

Debugging information before and after sending requests
to components

● PassivityWrapper from VisualWorks \ Smalltalk
Possibility to control user activities to a component –
either it is allowed or disabled

19/12/07 Uwe Gühl, Software Engineering DP-03 v1.0 26

Decorator
● Related Patterns

– Adapter
● A decorator changes responsibilities of an object, where

an adapter will give an object a new interface
– Composite

● A decorator is something like a degenerated composite
with only one component

● But a decorator is not intended for object aggregation
– Strategy

● A decorator changes the outer part of an object
● A strategy changes the inner part of an object

