
Lesson Design Pattern 04
Composite, Iterator

v1.0a

Uwe Gühl

Fall 2007/ 2008

Software Engineering

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 2

Contents
● Composite
● Iterator

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 3

Composite
● Intent:

– Compose objects into tree structures to represent
part-whole hierarchies

– A client could treat individual objects and
compositions of individual objects in the same way

– ... is a Structural Pattern

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 4

Composite
● Motivation

– Graphical applications offer often the possibility to
create complex widgets, larger components or
diagrams out of simple components

– Discussion of a simple approach
● Primitive classes for basic graphical objects
● Container classes to collect this primitive graphical

objects
● Difficulty: These classes have to be treated by clients

always in a different way – an application has to differ
between primitive and container objects, the code
complexity is raising

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 5

Composite
● Ideas

– If the objects and the composition of objects should
be treated in the same way, they need something
like a common interface

– So clients could access them transparently
– If a dynamical adding of objects and container

objects should be possible, a recursive use has to
be established

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 6

Composite
● Solution

– Introducing of an abstract class representing both
● primitive objects and
● containers of primitive objects

– Let's call this abstract class Component.
● The class of primitives is something like a Leaf and
● The container class is our Composite.

– ... and how to establish the recursive idea?
CompositeLeaf

Component

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 7

Composite
● Example

aP1: Picture

aP2: Picture aL2: LineaL1: LineaT1: Text

aL3: LineaT2: Text
Picture

Picture

LineText

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 8

Composite
● Example

– .. and how to put ideas together?

aP1: Picture

aP2: Picture aL2: LineaL1: LineaT1: Text

aL3: LineaT2: Text

CompositeLeaf

Component

Picture

LineText

Composite

Leaf

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 9

Composite
● Solution

– The abstract class Component is needed for the
abstract interface

– The relation between Component and Composite
makes recursion possible

● The container class Composite could always contain
either another Composite container or a Leaf

● After a Leaf no further recursion is possible

– .
CompositeLeaf

Component

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 10

Composite
● Example

Picture

draw()
add(Graphic g)

draw()

LineText

draw()

graphicsGraphic

draw()
add(Graphic)

Add g to list of graphics

For all g in graphics
 g.draw()

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 11

Composite
● Example

– Typical composite object structure out of recursive
combined graphical objects

– With this structural pattern groups of
graphical figures could be created

aP1: Picture

aP2: Picture aL1: LineaR1: RectangleaT1: Triangle

aC1: CircleaT2: Triangle

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 12

Composite
● Consideration

– To offer the same accessibility the Composite and
the component need the same interface

– So clients have transparent access
– The Composite sends requests to the component

and executes additional activities (e. g. drawing of a
border)

– Recursive use of multiple Composites allows
dynamical adding of functionality

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 13

Composite
● Structure

operation()
add(Component)
remove(Component)
getChild(int)

• defines the common interface of
Leafs and Composites

Client Component

Leaf Composite

operation()
add(Component)
remove(Component)
getChild(int)

operation()
children

• stores and administrates
Components

• defines behaviour for
Components having
children

forall c in children
 c.operation()

Leaf n
operation()

...

• access the Composite
objects only via the
Component interface

• implements the
behaviour of the
particular objects

• Leaf objects don't
have children

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 14

Composite
● Example

Composite

Composites Leafs

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 15

Composite
● Collaboration

– Clients use the Component class interface to
interact with all the objects and object containers

● If there is an interaction with a Leaf, the request is
executed directly

● If there is an interaction with a Composite,
the Composite

– forwards the request to its children
– performs additional operations before or after forwarding –

if defined

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 16

Composite
● Applicability

Use the Composite Pattern
– to represent part-whole hierarchies of objects
– if clients should be able to handle

● individual objects and
● compositions of individual objects

in the same way

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 17

Composite
● Consequences

+ defines class hierarchies with objects and composites
+ Simplifies the client – individual and composed

objects could be treated similar
+ Makes it easy to add new components and objects as

the client code has not to be changed
– The overly general design makes it harder to restrict

the components of a composite, for example if a
specific composite should have only defined
components

● Run time checks could be necessary

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 18

Composite
● Implementation

– Explicit references to parent objects to simplify
navigation

● moving in the structure
● deleting a component

CompositeLeaf

Component

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 19

Composite
● Implementation

– Maximizing the Component interface
● Find the maximum number of operations which could be

shared by Leaf and Composite
● Component offers default implementations,

Leaf and Composite subclasses overwrite
 conflict, if operations are supported, which don't make
sense for sub classes, e. g. accessing children makes no
sense for Leafs

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 20

Composite
● Implementation

– Declaring child management operations

operation()
add(Component)
remove(Component)
getChild(int)

Component

Leaf Composite

operation()
add(Component)
remove(Component)
getChild(int)

operation()
children

operation()
add(Component)
remove(Component)
getChild(int)

Component

Leaf Composite

operation()

operation()
children

Leaf must
handle add(),
remove() ...
exceptions?

+ Transparency + Safety

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 21

Composite
● Implementation

– Caching to improve performance
● Example: Picture class could cache the bounding box of

its children
--> If children are not visible drawing or search for
children of children could be avoided

● Components must know their parents to realize this idea
– Clarification who should delete components

● Idea: Composites are responsible for deleting children, if
they get deleted

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 22

Composite
● Known Uses (see [GHJ+95])

– Graphical frameworks like VisualWorks Smalltalk
and HotDraw [Joh92]

– Java Swing Classes and Java AWT package
(Component, Container, Label, TextField, Panel,
Frame, Dialog, ...)

– Apache Jakarta Commons library, e. g. the class
CLICommand for combined commands (Macros)

– Credit system [CV02]

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 23

The Decorator has only
one Reference to exactly

one Component

Composite
● Related Patterns

– Decorator
● Decorator and Composite could work together, then they

have usually a common parent class.
● Decorators support the Component interface with

operations like Add, Delete, and GetChild
● Main difference between Decorator and Composite:

Leaf

Component

DecoratorConreteComponent

childrenComponent
component

The Composite could refer
to any number of

Components

Composite

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 24

Composite
● Related Patterns

– Chain of Responsibility
The component-parent link is used for a Chain of
Responsibility

– Flyweight could be used to share components not
referring to parents any more

– Visitor localizes operations and behaviour instead
of distribution across Composites and Leafs

– Iterator could be used to traverse composites

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 25

Iterator
● Intent:

– Provide a way to access the elements of an
aggregate object (e. g. a collection) sequentially
without exposing its underlying representation

– ... also known as “Cursor”
– ... is a Behavioral Pattern

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 26

Iterator
● Motivation

– To access or to operate on elements of a complex
data structure like a collection, a tree, or a hash
table, one would not like to take care about internal
implementation details

– The Iterator should
do all this stuff

● An iterator object is
responsible to access
and to traversal
a specific container

● The iterator offers a corresponding interface

ContainerIterator

First()
Next()
IsDone()
CurrentItem()
...

index

container
Container

count()
append(Item i)
remove(Item i)
...

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 27

Iterator
● Solution

– Encapsulation of the code to traverse an object
structure; two possibilities

● Internal Iterator: The data structure itself implements the
needed functionality

● External Iterator: The code to traverse the object
structure gets released in an own object

– Advantage: Storage of the current position possible

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 28

Iterator
● Structure

– Internal Iterator
Collection

do: aBlock
select: aBlock
collect: aBlock

for each element e
in self: [aBlock value: e]

Client

Remark:
This Smalltalk example could not be implemented
reasonable in C++ or Java

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 29

Iterator
● Structure

– External Iterator

Client

Iterator

reset()
next()
hasNext()
...

position

collection

Collection

createIterator()
count()
append(element)
remove(element)
...

position = position +1;
return collection.get(position);

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 30

Iterator
● Structure

– Polymorphic Iteration

Client

Iterator

reset()
next()
hasNext()
...

position
AbstractList

createIterator()
count()
append(item)
remove(item)
...

OrderedList OrderedListIterator

ListIterator

The Iterator defines the interface
to access and traverse elements

The ConreteIterators
implement the
interface,
the next element in
traversal could be
calculated

The Aggregate
defines an interface,
so that Iterator
objects could be
generated

The ConcreteAggregates
return instances of
the proper
ConreteIterator List

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 31

Iterator
● Structure – Coding

– Polymorphic Iteration
● The code of the client to traverse an Aggregate (e. g.

AbstractList) is always the same, independent of the
ConcreteAggregate in use

List myList = new OrderedList();
Iterator i = myList.createIterator();
while (i.hasNext()) {

Object e = i.next();
} A Factory Method

returns an
OrderedListIterator

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 32

Iterator
● Code example
Internal Iterator (Smalltalk):

parts do:[:part | part draw].
Internal Iterator with filter function (Smalltalk):

newParts := parts select:[:part | part isNew].
External Iterator (Java):

Vector parts = ...;
Iterator i = parts.iterator();
while (i.hasNext()) {

 ((Part)i.next()).draw();
}

Iterator

Operation to
be executed

Collection

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 33

Iterator
● Consequences

+ Iterators support variations in the traversal of an
aggregates

● Different Iterators could support different traversal
variants

+ All traversal algorithms are implemented in one
location

+ Several iterations could traverse a collection at the
same time, as the different traversal states could be
tracked

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 34

Iterator
● Implementation

– Iterator has to know implementation details of the
corresponding collection owing the circumstances,
especially in static typed languages

– Who controls the iteration?
Who implements the traversal algorithm?

● Iterator controls the iteration  Internal Iterator
● Client controls the iteration  External Iterator

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 35

Iterator
● Implementation

– Who controls the iteration?
● Internal Iterator:

– can encapsulate different kind of iterations
– is easier to use, as the client has not to care about how the

iteration loop is specified
– more work to implement

● External Iterator:
– more flexible in use, allows for example the comparison of two

collections
– better to use in programming languages without anonymous

functions like C++

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 36

Iterator
● Known Uses

– Most collection class libraries offer iterators
● In Smalltalk e. g.:

– Collection (internal)
– Stream (external)

● java.util.Collection

16/01/08 Uwe Gühl, Software Engineering DP-04 v1.0a 37

Iterator
● Related Patterns

– Composite
● Iterators are often used for recursive structures such as

Composites
– Factory Method

● Factory Methods are used by Iterators to instantiate the
indicated Iterator subclass.

– Memento
● Memento and Iterator are often combined – An Iterator

could use a Memento to gather the state of an iteration

