
Presented by Group4



What is Composite Pattern

� Structural Pattern

� Allows a group of objects to be treated as 

single instance of object

� Intend to compose objects into tree 

structures to represent part-whole 

hierarchies



Motivation

� Complexity in tree-structured data

� Interface to treat complex objects uniformly

� Design to “has-a” relationship



When to use

� Supposed you are a commander

� You’re giving command “fire” to your soldiers

� If you has 3 soldiers, that’s fine, right?



When to use (Contd.)

� What if you have 10 soldiers? Not going fine…



When to use (Contd.)

� What if you have 100 or 1,000 soldiers?

� I bet you’ll be shot before giving your 

command to all of them…



When to use (Contd.)

� How to make task simplier?

� Assign an officer to give command to their 

soldiers

� Now you have to command only 1-3 officers



Structure



Structure (Contd.)

� Component

- is the abstraction for all components

- declares the interface for objects in the 
composition

- implements default behavior for the interface

- declares an interface for accessing and 
managing its child components

- (optional) defines an interface for accessing a 
components's parent in the recursive structure, 
and implements it if that's appropriate



Structure (Contd.)

� Leaf

- represents leaf objects in the composition

- implements all Component methods 



Structure (Contd.)

� Composite

- represents a composite Component 

(component having children)

- implements methods to manipulate children

- implements all Component methods, 

generally by delegating them to its children



Examples

import java.util.ArrayList;

interface Commander {

//Fire command

public void fire();

}



Examples (Contd.)

class Officer implements Commander {

//Collection of soldiers.

private ArrayList<Commander> soldiers = new 
ArrayList<Commander>();

//Group fire command

public void fire() {

for (Commander soldier : soldiers) {

soldier.fire();

}

}



Examples (Contd.)

//Adds the soldier to officer's control.

public void add(Commander soldier) {

soldiers.add(soldier);

}

//Removes the soldier from officer's control.

public void remove(Commander soldier) {

soldiers.remove(soldier);

}

}



Examples (Contd.)

class Soldier implements Commander {

//Fire command.

public void fire() {

System.out.println("Fire!");

}

}



Examples (Contd.)

public class Command {

public static void main(String[] args) {

//Initialize four soldiers

Soldier soldier1 = new Soldier();

Soldier soldier2 = new Soldier();

Soldier soldier3 = new Soldier();

Soldier soldier4 = new Soldier();



Examples (Contd.)

//Initialize three officers

Officer officer = new Officer();

Officer officer1 = new Officer();

Officer officer2 = new Officer();

//Composes the officers

officer1.add(soldier1);

officer1.add(soldier2);

officer1.add(soldier3); 

officer2.add(soldier4);



Examples (Contd.)

officer.add(officer1);

officer.add(officer2);

//Prints the complete fire command (four 

times the string "Fire!").

officer.fire();

}

}



Questions?


