
By Thai-Swiss Connections

Template Method

Pattern

Pretest : create class diagram

We need to create a house in many styles

with this algorithm

- Create building framework

- Create floor

- Create wall

- Create roof

Notice

� Every home style must follow the algorithm in
previous page

� Variety of home style.

� In each step of this algorithm are different in
detail for each style

Example

Create building
framework

Create
floor
Create
wall

Create
roof

Template Method

Intent

Define the skeleton of an algorithm in an

operation, deferring some steps to subclasses.

Template Method lets subclasses redefine
certain steps of an

algorithm without changing the algorithm's

structure

Problem

� In many cases where you have several
classes that inherit from the same superclass
some of them are likely to implement
algorithms that are identical in structure.
Refactoring the code inside the algorithm will
enable you to move some common code
outside the subclasses and into the
superclass. The superclass can then be
responsible for handling the algorithm and
the common methods while the subclasses
can implement the methods that are unique

Introduction

Template Method

Context

1 A general algorithm can be used in multiple
different classes

2 The algorithm can be broken into smaller
parts that can be different for each class

3 The executing order of the parts in the
algorithm do not depend on the class

but different sub classes can have different
functionality after implementing the methods
in the super class.

Remind your knowledge

Pattern

Template Method

Strategy

Factory Method

Description

Encapsulate interchangeable
behaviors and use
delegation to decide which
behavior to use

Subclass decide how to
implement steps in an
algorithm

Subclass decide which
concrete classes to create

Solution
1.Define an abstract class that has a method that executes the
algorithm and holds abstract versions of

the methods used in the algorithm

2.Implement the algorithm in the abstract class, but do not
implement the methods that the algorithms uses

3.Each subclass of the abstract class defines the unimplemented
parts of the algorithm, but leaves the

algorithm itself untouched

Example Usage - Simple

?? ??

class SuperClass{
public void doAlgorithm() {

for (int i = 1; i < 2; i++) {
print("Loop #" + i);
uniqueMethod1();
commonMethod();
uniqueMehod2();

}

private void commonMethod() {
print("commonMethod");

}

abstract void uniqueMethod1();
abstract void uniqueMethod2();

}

class SubClassTwo extends SuperClass {
public void uniqueMethod1() {

print("SubClassTwo: uniqueMehod1");
}

public void uniqueMethod1() {
print("SubClassTwo: uniqueMehod2");

}
}

class SubClassOne extends SuperClass {
public void uniqueMethod1() {

print("SubClassOne: uniqueMehod1");
}

public void uniqueMethod1() {
print("SubClassOne: uniqueMehod2");

}
}

RUN

SuperClass sc = null;
sc = new SubClassOne();
sc.doAlgorithm();
print("\n");
sc = new SubClassTwo();
sc.doAlgorithm();

Output:
Loop #1 SubClassOne: uniqueMethod1
commonMethod
SubClassOne: uniqueMethod2
Loop #2 SubClassOne: uniqueMethod1
commonMethod
SubClassOne: uniqueMethod2

Loop #1 SubClassTwo: uniqueMethod1
commonMethod
SubClassTwo: uniqueMethod2
Loop #2 SubClassTwo: uniqueMethod1
commonMethod

SubClassTwo: uniqueMethod2

Come back to our solution

Class Diagram
CreateHouse

CreateFramework()
CreateFloor()
CreateWall()
CreateRoof()

ChineseHouse

BuiltHouse()
CreateFramework()

CreateFloor()
CreateWall()
CreateRoof()

ThaiHouse

CreateFramework()
CreateFloor()
CreateWall()
CreateRoof()

Coffee Break

Some people can't live without their coffee; some
people can't live without their tea. The common

ingredient?

Caffeine of course!

It's time for some caffeine

Barista Training Manual

Coffee Recipe

1) Boil some water

2) Brew coffee in
boiling water

3) Pour coffee in cup

4) Add sugar and milk

Tea Recipe

1) Boil some water

2) Steep tea in boiling
water

3) Pour tea in cup

4) Add lemon

=> Similar algorithms!

Whipping up some coffee and tea

public class Coffee {

void prepareRecipe() {

boilWater();

brewCoffeeGrinds();

pourInCup();

addSugarAndMilk();

}

public void boilWater(){

System.out.println("Boiling water");

}

public void brewCoffeeGrinds(){

System.out.println("Dripping Coffee through filter");

}

public void pourinCup(){

System.out.println("Pouring into cup");

}

public void addSugarAndMilk(){

System.out.println("Adding Sugar and Milk");

}

}

Whipping up some coffee and tea
public class Tea {

void prepareRecipe() {

boilWater();

brewTeaBag();

pourInCup();

addLemon();

}

public void boilWater(){

System.out.println("Boiling water");

}

public void steepTeaBag(){

System.out.println("Steeping the tea");

}

public void addLemon(){

System.out.println("Adding lemon");

}

public void pourInCup(){

System.out.println("Pouring into cup");

}

}

Redesign the classes

We need to redesign the Coffee and Tea
classes in order to remove redundancy.

Redesign the classes (Cont'd)
Tea

1) Boil some water.

2) Steep the teabag in the water

3) Pour tea in a cup

4) Add lemon

Caffeine Beverage
1) Boil some water
2) Brew
3) Pour beverage in a cup
4) Condiments

2) Steep the teabag in the water
4) Add lemon

2) Brew the coffee grinds
4) Add sugar and milk

Coffee
1) Boil some water.
2) Brew the coffee grinds
3) Pour coffee in a cup
4) Add sugar and milk

Meet the template Method

boilWater();

addCondiments();

brew();

pourInCup();

public abstract class CaffeineBeverage()

void final prepareRecipe () {

}
abstract void brew();

abstract void addCondiments();

void boilWater() {
//implementation

}
void pourInCup() {

//implementation
}

} ?

Let’s make some tea..

Okay, first we need a Tea object…

Tea myTea = new Tea();

Then we call the template method
myTea.prepareRecipe();

Which follows the algorithm for making caffeine beverages.

Let’s make some tea..

� First we boil water:
boilWater();

� Next we need to brew the tea, which only the
subclass knows how to do:

brew();
� Now we pour the tea in the cup; this is the same for

all beverages so it happens in CaffeineBeverage:
pourInCup();

� Finally, we add the condiments, which are specific to
each beverage, so the subclass implements this:

addCondiments();

What did Template Method get us?

�Without TM
Coffee and tea are running the

show;
they control the algorithm

Code is duplicated across
coffee and tea

Classes are organized in a
structure that requires a lot of
work to add a new Caffeine
beverage.

� With TM

The CaffeineBeverage class runs

the show; it has the algorithm, and
protects it.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The Template Method version
provides a framework that other
caffeine beverage can be plugged
into. New caffeine beverages only
need to implement a couple a
methods.

The 'hook'-method
abstract class AbstractClass {

final void templateMethod () {

primitiveOperation1();

primitiveOperation2();

concreteOperation();

hook();

}

abstract void primitiveOperation1();

abstract void primitiveOperation2();

final void concreteOperation(){

// implementation here

}

void hook();

}

The 'hook'-method (Cont'd)
public abstract class
CaffeineBeverageWithHook {

final voidprepareRecipe () {
boilWater();
brew();
pourInCup();
if (customerWantsCondiments()) {

addCondiments();
}

}

abstract void brew();

abstract void addCondiments();

voidboilWater() {
System.out.println(“Boiling water”);

}

void pourInCup() {
System.out.println(“Pouring into

cup”);
}

boolean
customerWantsCondiments() {
return true;

}
}

The subclass can ovveride this
method, but doesn't have to.

The 'hook'-method (Cont'd)

public class CoffeeWithHook extends CaffeineBeverageWithHook
{

public void brew() {

System.out.println(“Dripping Coffee
through filter”);

}

public void addCondiments() {

System.out.println(“Adding sugar and
milk”);

}

public boolean customerWantsCondiments() {

String answer = getUserInput ();

if (answer.toLowerCase().startsWith(“y”)) {

return true;

} else {

return false;

}

}

private String getUserInput() {
String answer = null;

System.out.println(“Would you like
milk and sugar with your

coffee? (y/n)?”);

BufferedReader in = new
BufferedReader (new
InputStreamReader (System.in));

try {
answer = in.readline();

} catch (IOException ioe) {
System.err.println(“IO error”);

}
if (answer == null) {

return “no);
}
return answer;

}

Here's where we override the hook
and provide our own functionality.

Disadvantage

Disadvantage of Template methods

� Communicates intent poorly

� Difficult to compose functionality

� Difficult to comprehend program flow

� Difficult to maintain

Conclusion

Conclusion

� A “template method” defines the steps of an
algorithm, deferring to subclasses for the
implementation of those steps.

� The Template Method Pattern gives us an
important technique for code reuse.

� The Template Method’s abstract class may
define concrete methods, abstract methods and
hooks.

� Abstract methods are implemented by
subclasses.

Conclusion

� Hooks are methods that do nothing or default
behavior in the abstract class, but may be
overridden in the subclass.

� To prevent subclasses from changing the
algorithm in the template method, declare the
template method as final.

� The Hollywood Principle guides us to put
decision-making in high-level modules that can
decide how and when to call low level modules.

Conclusion

� You’ll see lots of uses of the Template Method
Pattern in real world code, but don’t expect it all
(like any pattern) to be designed “by the book”.

� The Strategy and Template Method Patterns
both encapsulate algorithms, one by inheritance
and one by composition.

� The Factory Method is specialization of
Template Method.

Thank youThank youThank youThank youThank youThank youThank youThank you

