
Lesson Design Pattern 06
State, Singleton

v1.0a

Uwe Gühl

Fall 2007/ 2008

Software Engineering

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 2

Contents
● State
● Singleton

Used sources:
– [GHJ04] Gamma, Helm, Johnson, Vlissides: Design

Pattern, Addison Wesley, 2004
– [Hus08] Vince Huston: Design Pattern,

www.vincehuston.org/dp/, 2008

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 3

State
● Intent:

– Allow an object to change its behavior when its
internal state changes

– The object will appear to change its class
– An object-oriented state machine
– To use a collaborating wrapper with polymorph

technique
– ... is a Behavioral Pattern

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 4

State
● Motivation

– If an object has different behavior in different states,
modelling of the behavior with if / else and case
statements could get complex quickly

– The program code should be clearly arranged and
easy to maintain

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 5

State
● Ideas

– Introduction of an abstract class representing
different states

– This abstract class defines a common interface for
the concrete subclasses

– Each subclass implements the behavior of a
specific state

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 6

State
● Structure

• defines an interface to
encapsulate the behavior
depending on a ConcreteState

• Implement a behavior
associated with a state of
the Context

• defines the interface of
interest to clients

• maintains an instance of a
ConcreteState subclass that
defines the current state

Client

state
1Context

request()

State

handle()

ConcreteStateA

handle()

ConcreteStateB

handle()

state.handle()

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 7

State
● Example

Management of states of a network connection

Client TCPConnection

open()
close()
acknowledge()

TCPListen TCPClosed

TCPState

doOpen()
doClose()
doAcknowledge()

1 1state

TCPEstablished

doOpen()
doClose()
doAcknowledge()

doOpen()
doClose()
doAcknowledge()

doOpen()
doClose()
doAcknowledge()

state.doOpen()

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 8

State
● Collaboration

– Context delegates state-specific messages to the
current ConcreteState object

– Context could pass itself to the State object so that
the State object could communicate with it if
necessary

– After configuration of a Context with State objects
the client interacts with Context only

– Succeeding States – could be decided either by
Context or the ConcreteState subclasses

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 9

State
● Applicability

Use the State Pattern if
– an object's behavior depends on its state, and it

must change at run-time depending on that state
– operations have large conditional statements

depending on an object's state

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 10

State
● Consequences

+ State depended behavior gets partitioned and
localized ( Polymorphy)
• New states could be added easily with new

subclasses
• As this pattern distributes behavior for different

states to subclasses, the number of classes in the
system increases instead of large conditional
statements in one class

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 11

State
● Consequences

+ State transitions get modeled explicitly
• Transitions between the states are explicit
• Protection of inconsistent internal states

+ It's possible to use state objects in common – if they
don't have instance variables
• Shared in this way the State objects are just

Flyweights

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 12

State
● Implementation

– Who defines the state transitions?
Context or State?

● Example:
// every action returns the next state
state = state.doOpen();

– Alternative Implementation with tables to map
inputs to state transitions

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 13

State
● Implementation

– Lifecycle of state objects – two ideas:
● Create State objects only when needed and destroy them

afterwards
– If states to be entered are not known at runtime and contexts

change state often
– Avoids creating not needed state objects

● Creating them ahead of time and never destroy them
– If state changes occur rapidly
– If it is okay that instantiation costs are paid once in the beginning

and that Context must keep references to all states

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 14

State
● Known Uses (see [GHJ+95])

– TCP connection protocols [JZ91]
– HotDraw Framework [Joh92]
– UniDraw Framework

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 15

State
● Related Patterns [Hus08]

– State, Strategy, and Bridge have similar solution
structures. They all share elements of the
"handle/body" idiom [Coplien, Advanced C++, p58]

● State and Bridge use the same structure to solve different
problems [Coplien, C++ Report, May 95, p58]

– State allows an object's behavior to change along with its state
– Bridge's intent is to decouple an abstraction from its

implementation so that the two can vary independently.
● The difference between State and Strategy is the intent

– Strategy: The choice of algorithm is fairly stable.
– State: A change in the state of the "context" object causes it to

select from its "palette" of Strategy objects. [Coplien, Multi-
Paradigm Design for C++, Addison-Wesley, 1999, p253]

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 16

State
● Related Patterns

– Flyweight
● The Flyweight pattern explains when and how State

objects could be shared
– Interpreter

● Interpreter can use State to define parsing contexts.
– Singleton

● State objects are often Singleton

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 17

Singleton
● Intent:

– A Singleton is the combination of two essential
properties:

● Ensure a class only has one instance
● Provide a global point of access to it

– ... is a Creational Pattern

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 18

Singleton
● Motivation

– For some classes its important that they have
exactly one instances

– Example: For many printers should be only one
spooler available

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 19

Singleton
● Applicability

– Exactly one instance of a class must be available
and this instance must be accessible by a client
from a well known access point

– The sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without changing their code

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 20

Singleton
● Structure

Singleton
static Instance()
SingletonOperation()
GetSingletonData()

static uniqueInstance
singletonData

return uniqueInstance

• defines an instance operation, which
makes it possible that clients could
access the sole instance

• could be responsible for creating the
sole instance

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 21

Singleton
● Collaboration

– Clients access an Singleton only through an
instance operation provided by it

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 22

Singleton
● Consequences

+ Controlled access to the only instance
+ The Singleton controls who uses when an instance
+ The global namespace gets not extended

• Too many global variables in a system make it
complex – the Singleton pattern offers an
alternative to global variables

• Singletons permit lazy initialization, where global
variables typically consume always resources

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 23

Singleton
● Consequences

+ Subclassing allows to refine operations and
representations

+ Realization of a variable number of instances possible
+ More flexibility than with class operations

• The functionality of a Singleton could be achieved
with other techniques like static functions in C++ or
class methods in Smalltalk

• But it's more difficult then to allow more than one
instance of a class

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 24

Singleton
● Consequences

– Inflexibility
• The property “a class only has one instance” often

has not real value - and it reduces flexibility in the
system, e. g. if a second object of a “singleton” is
available

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 25

Singleton
● Implementation

public class Singleton {
// Private Class attribute, created with first use of class
private static Singleton instance;
// Constructor is private, may not be instantiated from external
private Singleton() {}
// Static method "getInstance()" returns the only instance
// of the class. Lazy initialization.
// Because it's synchronized it is safe for threads.
public synchronized static Singleton getInstance() {

if (instance == null) {
instance = new Singleton();

}
return instance;

}
}

Each created instance will be
same

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 26

Singleton
● Implementation

public class Singleton {
// Private Class attribute, created with first use of class
private static Singleton instance;
// Constructor is private, may not be instantiated from external
private Singleton() {}
// Static method "getInstance()" returns the only instance
// of the class. Lazy initialization.
// Because it's synchronized it is safe for threads.
public synchronized static Singleton getInstance() {

if (instance == null) {
instance = new Singleton();
return instance;

}
return null;

}
}

How to do exception handling if
the singleton already exists?
Here getInstance() returns null,
what the client could test

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 27

Singleton
● Implementation

//fails at compile time because constructor is privatized
mySingleton = new Singleton();

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 28

Singleton
● Implementation

– Here's a very simple implementation of a singleton
Foo object*:

Foo globalFoo; // Don't create any
 // other instances!!!

* Source: http://c2.com/cgi/wiki?SingletonPattern

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 29

Singleton
● Known Uses

– In Smalltalk the relationship between classes and
metaclasses are designed with Singletons

– Math class is something like a Singleton class in the
standard Java class libraries

● is declared final
● all methods are declared static, meaning that the class

could not be extended.
● Goal is to wrap a number of common mathematical

functions such as sin and log in a class-like structure,
because Java does not support functions that are not
methods in a class.

21/01/08 Uwe Gühl, Software Engineering DP-06 v1.0a 30

Singleton
● Related Patterns

– Many patterns can be implemented using the
Singleton pattern like

● Prototype
● Abstract Factory
● Builder

– Facade objects could be Singletons if the Facade
object should be unique

– State objects are often Singletons

