
By “Group of Four”

Singleton Pattern



Lets do some work out!

We have a Minimart “Seven-Elephants”

7-Elephants uses a class to store its data on Item Stock in the 
Minimart.

Cashier must know the stock class to do some transaction

There are many cashier, so we need to organize them somehow!

Please HELP US!! Show US Your Design!!

Here are some Classes examples.
Item Class, Cashier Class, Stock Class, etc..



One of a Kind Object!!
What will happen if there’s many instance of the stock?

Only One Instance of an object!!!

There should be only one instance of stock right!?!?!

Singleton Helps!!!



The Singleton Pattern
Ensures a class has only one instance and provide a global 
point of access to it

Prevent other class in creating the singleton class.

Singleton

-instance : Singleton

-Singleton()
+Instance() : Singleton



How to Singleton?
Private your Constructor!

So others class can’t instantiate it 

Create a static instance of the class which you want to 
singleton!!

The Unique instance

Create a method to get the instance of the singleton class!!!
So other class can get the unique instance.



The Stock Class
public class Stock{

List items;
…//Some useful attributes

public Stock(){ ….. }

Item getItemDiscription(){ ….. }
//more useful method

}

Lets Singleton the Stock 
Object!!!!!!



Private the Constructor
public class Stock {

List items;
…//Some useful attributes

private Stock() { ….. }

Item getItemDiscription() { ….. }
//more use full method

}



Create an Static Instance
public class Stock {

List items;
private static Stock;
…//Some useful attributes

private Stock() { ….. }

Item getItemDiscription(){ ….. }
//more use full method

}



Create a get instance method
Public class Stock {

List items;
private static Stock stockInstance; 

…//Some useful attributes

private Stock() { ….. }

public static Stock getInstance() {
if(stockInstance == null) {

stockInstance = new Stock();
}
return stockInstance;

}

Item getItemDiscription(){ ….. }
//more use full method

}

Now we have the singleton Stock class!!



We’re not done yet!
What if there’s many cashier working together?

Maybe there’s problem you didn’t see?

This problem are occur frequently in multithread software.

What happens if 2 cashier are working at the same time???



Let us be the JVM
Cashier1 Cashier2 Value of stockInstance

public static Stock getInstance() { null

public static Stock getInstance() { null

if(stockInstance == null) { null

if(stockInstance == null) { null

stockInstance = new Stock(); <Stock1>

return stockInstancel <Stock1>

stockInstance = new Stock(); <Stock2>

return stockInstancel <Stock2>

This is not good, there’re 2 instance of stock!!



How can we improve with 
multithreading??
Public class Stock {

List items;
private static Stock stockInstance; 
…//Some useful attributes

private Stock() { ….. }

public static synchronize Stock getInstance() {
if(stockInstance == null) {

stockInstance = new Stock();
}
return stockInstance;

}

Item getItemDiscription(){ ….. }
//more use full method

}
Any Problems??



How can we improve with 
multithreading?? (Better)
Public class Stock {

List items;
private static Stock stockInstance = new Stock(); 
…//Some useful attributes

private Stock() { ….. }

public static Stock getInstance() {
return stockInstance;

}

Item getItemDiscription(){ ….. }
//more use full method

}



How can we improve with 
multithreading?? (Even Better!!)
Public class Stock {

List items;
private volatile static Stock stockInstance; 
…//Some useful attributes

private Stock() { ….. }

public static Stock getInstance() {
if (stockInstance == null) {

synchronized (Stock.Class) {
stockInstance = new Stock();

}
}
return stockInstance;

}

Item getItemDiscription(){ ….. }
//more use full method

}

This method is called “double-checked locking”


	Singleton Pattern
	Lets do some work out!
	One of a Kind Object!!
	The Singleton Pattern
	How to Singleton?
	The Stock Class
	Private the Constructor
	Create an Static Instance
	Create a get instance method
	We’re not done yet!
	Let us be the JVM
	How can we improve with multithreading??
	How can we improve with multithreading?? (Better)
	How can we improve with multithreading?? (Even Better!!)

