STATE PATTERN

By the Group of Four

State in a Day Life

= Think of it a little bit, many things in our life
have states.

= Elevator : even an elevator has states
s Push up or down button
s Waiting for the elevator to arrive
@ Door open
B Etc.

JAVA in real-life

= Many machines or scenarios in your life can
also be implement with Programming too.

E Such as
s The Elevator

= Bank Account
= Etc.

JAVA in real-life (cont.)

And many those stuff also have states

How can we implement the state of thing in
Object Oriented Design with quality?

There are many ways to do it
But the best approch is the State Pattern!!!

Introduction

= State Pattern is one of the 23 Patterns of Design
Patterns by the Gang of Four

= State Pattern is a Behavioral Pattern(we will tell
you later why).

= We, the Group of Four are the subclass of them
and going to be their leaf to explain and
illustrate the State Patterns to you.

Let’s try some example

= As we told you before that object in real-life
also has state but to illustrate we would like to
show you an easy test with the Graphic user
interface.

5 Why? To give you the idea of how the state
change in the GUI.

Example

= Consider a class with next() and previous()
whose behavior changes depend on the state of
the object.

= The next() operation will change the state of the
canvas object to the next color.

= The previous() operation will change the state
of the canvas object to the previous color

s Is what the Ul look like

FE Mo State Pattern E]@]‘|

Example(cont.)

= Here is how the color state cycle.

Black

= Now you can implement this class.

Ny it without State Pattern

= Toimplement this without a state pattern is
very easy.

B You are giving part of a dummy context with
part of a GUI

& In the GUI you only need to implement only
the action call nextState() and previousState.

Heére is one of the solution

public vold next (] 1

1 [atatE. == Color.eadr -
SLELE Color.blue;

} else if ([(state == Color.pglue) |
Siate. = Color.black;

y Blae if | atate ==:Color.black) A
state = Color.gEeen;

} Blae 1if [(state == ColOor . Esesm|
State . = Color. oo

public wvolid previous() |
it [EE&atE == Color.fed) |
state = Color. green;
i else 1T [(state == Color.EEEEs] |
gtate = Color.klack:
+ Belag 1if [(ZtareE == Color.blacgk)] |
stake - Color.blue’

 else IT |[State == Color.blue) |

state = Color. red:

private wvolid nextState java.awt.event.MouseEvent evt) |
A TODO add wour handling code here:

context.next() :

canvasl.setBackground (context.get3tate (]) ;

private wvolid previousstate [java.awt.event.MouseEwvent evt) |
A4 TODO add vour handling code here:

context.previous|) :
canvasl.setBackground (context.get3tate()) ;

What is the problem?

= There 1s no problem with it if it only has 4 state
and a tiny size of code.

m What if

= The code to implement one state are huge
= [etjust say that some may have 20 state

= Man!! You ‘re probably die from coding and
managing the change request.

Here is where State pattern come
[N

= Now ['would like to introduce you to state
pattern.

& Using this pattern will solve this problem for
you.

State pattern

= Intent

= Allow an object to alter its behavior when its internal
state changes. The object will appear to change its
class.

= That ‘s why it’s a behavioral pattern because it
allow obiject to alter its behavior

= Let’s see how.

Structure

= First please try to create the UML class diagram
for the previous example with state pattern.

= Iry it your way then your can come up and
show it to the entire class.

= The structure is given in the next slide.

iifesStructure of state pattern

Class D

lagram

{ Fram 5P}

ContextSP

Allribagag

DOpavaliane
public Context5P(State state)

greenState
{ From 5P}

Albriba i

State
public ContextSF() " state 1 { From SF}
public State getState() i —
public woid setState(State state)
public void next() pubhic void handielkxt[Context SP ¢)
public void handie Pre vious{ ContextSP ¢)
public Color getColor|)
i)
blueState =8
{ From 5P} hlackState redState
{From SP } {From 5P}
Aldribhin
DOiparalions - Oparaliong

Opavalians Ragalnad Fram Sl
public woid handle Mext{ ContextSP e)
public woid handle Previous{ ContextSP c)
public Color get Colon

Operalions

DOiperalions Radinsd Fram Sk
public woid handle Next{ Context5P e)
public woid handle Previous(ContextSP c
public Color get Colon)

Oparalions Radeinad Fram Siake
public void handle Mext{ CortextSP ¢)

public woid handle Previous{ ContextSP c)
public Color get Colon

Operalions Redalned Fram Siaks
public void handleNext({ ContextSP c)

public void handlePrevious(ContextSP &)
public Color getColor{)

Implemantation

= Here come the exercise2

= You are giving the part of Context, GUI,
concreteState class.

= The instruction is on the top
= Go implement it.

public class ContextSP |
!/ The contained state.
private 3tate state = null; f/ State attribute
Y Creates & new Context with the specified state.
public ContextS5P (State state) {this.state = state;}

4 Creates a new Context with the default =tate.
public Context5P () {this(new redltate ()1}
A4 Beturn=z the =tate.
public ZItate getState() {return state;}
f4 Bets the state.
public woid setState (3tate state) {this.state = state;}

l.."?rﬂ'l

* The pushi) method performs different actions depending

= on the state of the object. Using the 3tate pattern,
B we delegate this behavior to our contained state object.
wy
public woid next () {state.handleMNext (thiz);:}
l.."'.'\.'?\r
* The pull() method performs different actions depending
* on the state of the obhject. Using the 3tate pattern,
* we delegate this behavior to our contained state obhject.
g

wvoid previous (] {state.handlePrevious(this);}

private woid nextState [Jjava.awt.event.MouseEvent evt)
. 0 ToDO add wour handling code here:

context.next () ;

this.canvasl.setBackground (context.get3tate () .getColor ()] :

private woid previousState | java.awt.event.MouseEvent ewvt) |
A4 TODO add wour handling code here:

context.previous|() ;
this.canvasl.setBackground (context.get3tate () .getColor ()) :

public class blackState extends State |
ff Next state for the Black state:
g ion & pushi)l, go to Tred"”

s on & pull(), go to "green™

public wold handleHext (Context3F <o) |
o .Setitate (new greenstatel()) !

¥

public wolid handlePrevious (ContextiP o) |
o.3etitate (new blueltate ()] ;

[

public Color getColor () {return (Color.black)::

When to use State Pattern

= An object's behavior depends on its state, and it
must change its behavior at run-time
depending on that state.

& Operations have large, multipart conditional
statements that depend on the object's state.
The State pattern puts each branch of the
conditional in a separate class.

Adlvantages of State pattern

= Localized the behavior of each state into its
own class.

Remove all duplicate if statements.
Flexible

Potential extensibility

In some application it increase testability.

Disadvantage

= The only disadvantage of this pattern is that is
you have more state say 100 state you will have
100 ConcreteState class too.

Thank you

= Now you know the State pattern
= I hope this presentation help you in some way

= If there any mistakes I would like to apologise
for those.

