
Lesson Design Pattern 07
Proxy
v1.0

Uwe Gühl

Fall 2007/ 2008

Software Engineering

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 2

Proxy
● Intent:

– Provide a placeholder for another object to control
access to it

– Use a wrapper and delegation to enable
distributed, controlled, or intelligent access

– ... also known as Surrogate
– ... is a Structural Pattern

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 3

Proxy
● Motivation

– If the creation and initialization of objects are
expensive, e. g. resource-hungry, it makes sense to
postpone it unless and until they are really needed

– Example: Document with graphical objects in it
● Big images could be expansive to create
● Opening a document should be fast!
● Not every image is necessary in the beginning, typically

they won't be visible at the same time
● Idea: Use another object instead: An image proxy –

acting for the real image

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 4

Proxy
● Motivation

– The image proxy –calls the real object only after
the request of the editor, invoking draw()

anImgProxy :ImageProxy

filename

aTextDoc :Textdocument

image

anImg :Image

data

On disk

In memory

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 5

draw()
getExtent()
store()
load()

Proxy
● Motivation

ImageProxyImage

Graphic

if (image == 0) {
 image = loadImage(fileName);
}
image.draw();

if (image == 0) {
 return extent;
} else {
 return image.getExtent();
}

draw()
getExtent()
store()
load()

fileName
extent

draw()
getExtent()
store()
load()

imageImp
extent

DocumentEditor

image

Knowing the extent
could be used to

determine width and
height of an image

without instantiating it

reference to the image
on the disk

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 6

Proxy
● Non Software Example

RealBoss Secretary

talk()
getAppointment()

Boss

Client
● getAppointment()

and talk() with
RealBoss only after
talking to Secretary

● Secretary moderates
between Client and
Boss

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 7

Proxy
● Structure

ProxyRealSubject

Subject

request()
...

...
realsubject.request();
...

request()
...

Client

realSubjectrequest()
...

• defines the common interface for
RealSubject and Proxy

• provides an interface identical to the
Subject so that it could be used like
a RealSubject

• maintains a reference and controls
access to the RealSubject

• defines the real object that is
represented by the Proxy

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 8

Proxy
● Structure

– additional responsibilities of different Proxies

remote ProxyRealSubject

Subject

request()
...

request()
...

request()
...

• could cache additional
information about the
RealSubject so it could
postpone its creation

• encoding a request
• sending the encoded request

to the RealSubject in a
different address space

virtual ProxyRealSubject

Subject

request()
...

request()
...

request()
...

protection ProxyRealSubject

Subject

request()
...

request()
...

request()
...

• could check permissions of
the caller before enabling the
access to the RealSubject

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 9

Proxy
● Structure

– Possible object diagram of a proxy structure at
run- time

roxy :Proxy
realSubject

aClient :Client
subject

aRealSubject :RealSubject

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 10

Proxy
● Collaboration

– Proxy forwards requests to RealSubject when
appropriate, depending on the kind of proxy

– The RealSubject provides the key functionality, the
Proxy provides or refuses access to it

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 11

Proxy
● Applicability

Use the Proxy Pattern if
– you need to provide a substitute for an object

because it's inconvenient or not wanted to access it
directly. Possible reasons, if an object

● is located in a different address space
- you would use it as Remote Proxy

● has restricted access with different access rights
- you would use it as Protection Proxy

● is expensive to create, and should be created only on
demand
- you would use it as Virtual Proxy

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 12

Proxy
● Applicability

Use the Proxy Pattern if
– you need a smart reference performing additional

actions instead of a bare pointer; requirements
could be

● counting the number of references to a real object
– could be helpful if an object should / could be deleted or

destructed if there are no more references (smart pointer)
● loading a persistent object into memory after first

referencing
● locking of an object so that it could be changed only by

one other object

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 13

Proxy
● Consequences

+ The additional indirections could be used so that a
proxy acts as a

● remote proxy
to hide the fact that an object resides in a different
address space

● virtual proxy
to perform optimizations

● protection proxy
to control access to objects

● smart pointer
to do additional meaningful jobs, e. g. for garbage
collection

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 14

Proxy
● Consequences

+ Allows optimization like copy-on-write
● Instead of really copying a large object this process is

postponed until there are changes
● Subject must be reference counted – copy then means

increasing the reference count
● If an operation modifies the subject, it gets copied
● If the reference count is zero, the subject gets deleted

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 15

Proxy
● Implementation

– Knowledge about the real subject
● A communication through an abstract interface is

possible – so all RealSubject classes could be treated
uniformly

– Special language issues
● C++: Overloading “->” - the member access operator
● Smalltalk: Using “doesNotUnderstand”

– supporting a hook to support automatic forwarding of requests
– Reference to real subject before it is instnatiated

● address space-independent object identifier (e. g. file
name)

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 16

Proxy
● Implementation

– Checklist [from Vince Huston, vincehuston.org)
1. Identify what has to be done and implemented as proxy
2. Define the Subject as an interface so that the Proxy and the

RealSubject as original component are interchangeable
3. Consider to define a Factory that can encapsulate the

decision of whether a proxy or original object is desirable.
4. Proxy points to RealSubject and implements the interface.
5. The pointer may be initialized at construction, or on first use.
6. Each wrapper method contributes its leverage, and delegates

to the RealSubject object.

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 17

Proxy
● Known Uses (see [GHJ+95])

– ET++ text building block classes
– NEXTSTEP uses proxies as local representations

for objects that may be distributed
– "stub" code in RPC and CORBA provides a local

representative as a remote proxy

RPC = Remote Procedure Call
CORBA = Common Object Request Broker Architecture

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 18

Proxy
● Related Patterns

– Adapter
● An adapter offers a different interface to the adaptees
● A proxy offers the same interface as its subject

15/01/08 Uwe Gühl, Software Engineering DP-07 v1.0 19

Proxy
● Related Patterns

– Decorator
● Decorators may have the same implementations as

Proxies but they have another intent
● Both, Decorator and Proxy, compose an object and

provide an identical interface to clients
● A Decorator

– adds more responsibilities to an object without subclassing
– uses recursive composition to add flexible additional behavior

● A Proxy
– controls access to an object
– not designed for recursion
– focuses on one relationship – between the proxy and its subject

