
Lesson Design Pattern 08
Adapter, Facade, Bridge

v1.2

Uwe Gühl

Fall 2007/ 2008

Software Engineering

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 2

Contents
● Adapter
● Facade
● Bridge

Used sources:
– [GHJ04] Gamma, Helm, Johnson, Vlissides: Design

Pattern, Addison Wesley, 2004
– [Hus08] Vince Huston: Design Pattern,

www.vincehuston.org/dp/, 2008

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 3

Adapter
● Intent:

– Alternative name: Wrapper
– converts an interface of a class
– offers for an interface of a specified class another

interface, so that it can be used by a client to
enable collaboration

– ... is a Structural Pattern

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 4

Adapter
● Motivation

– A program working with different objects and using
their common interface, can be extended only by
other objects implementing this common interface

– An adapter makes it possible, that objects that don't
implement a common interface could be used by a
common interface – without changing the objects
themselves

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 5

Adapter
● Ideas

– The adapter implements the necessary interface
and changes requests of a client to requests, which
the object to be adapted could understand

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 6

Adapter
● Example

DrawingEditor

boundingBox()
createManipulator()

TextView

TextShape

getExtent()boundingBox()
createManipulator()

Shape

boundingBox()
createManipulator()

Line textView

return (new TextManipulator)

return textView.getExtent()

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 7

Adapter
● Structure – Object Adapter

... based on object composition • has an own interface in a
different environment which
needs to be adapted

• implements the common interface, changes
requests to specific requests, which could
be understood by the Adaptee

• works with objects using
a common interface

Client

request()

Adaptee

Adapter

specificRequest()

Target

request()

adaptee.specificRequest()
• defines the domain specific

interface for the Client

adaptee

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 8

Adapter
● Structure – Class Adapter

... uses multiple inheritance to adapt an
interface to another • has an own interface in a different

environment which needs to be adapted

• implements the common interface, changes
requests to specific requests, which could
be understood by the Adaptee

• works with objects using
a common interface

Client

request()

Adaptee

Adapter

specificRequest()

Target

request()

specificRequest()
• defines the domain specific

interface for the Client

• implementation

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 9

Adapter
● Structure –

Difference between Object Adapter and Class
Adapter
– A class adapter inherits the implementation of the

adaptee and delegates requests to the
corresponding implementation

– An object adapter has a relation to an object of the
adaptee and delegates the requests to this object

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 10

Adapter
● Structure – simplified

• has an own interface in a
different environment which
needs to be adapted

• defines and implements the common
interface for the Client, changes requests to
specific requests, which could be
understood by the Adaptee

• works with objects using
a common interface

Client

request()

AdapteeAdapter

specificRequest()

adaptee.specificRequest()

adaptee

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 11

Adapter
● Collaboration

– Clients call operations on an Adapter instance
– The Adapter call adaptee operations fulfilling the

request

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 12

Adapter
● Applicability

Use the Adapter Pattern if
– an existing class should be used, but its interface

does not match the one which is needed
– a reusable class should be created that cooperates

with other classes without compatible interfaces
– several existing subclasses should be used without

changing their interfaces by subclassing – an object
adapter can adapt the interface of its parent class

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 13

Adapter
● Consequences – Class adapter

+ An adapter as a subclass of an adaptee can overwrite
its behavior

+ Introduces only an object, no additional connection to
the adaptee necessary

– A class adapter does not work, if we would like to
adapt classes and subclasses

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 14

Adapter
● Consequences – Object adapter

+ An individual adapter could collaborate with multiple
adaptees, also with corresponding subclasses

– Overwriting of behaviour of an adaptee is more
difficult – a subclassing of the adaptee would be
necessary and a reference

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 15

Adapter
● Consequences
 Adjusting the adapter

How similar is the target interface to adaptee's?
Possible ranges:

● Simple interface conversion
e. g. changing names of operations

● Supporting an entirely different set of operations
 Pluggable adapters

to describe classes with built-in interface adaption

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 16

Adapter
● Consequences

+ Two way adapters
In multiple inheritance different adapters for different
purposes / different clients could be offered

StateVariable

ConstraintStateVariable

ConstraintVariable

for graphical
applications

for functional
applications

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 17

Adapter
● Implementation

– Implementing adapters in C++:
● Class adapter – via multiple inheritance

Adapter would be a subtype of Target and not of Adaptee
because it would inherit

– publicly from Target
– privately from Adaptee

● Object adapter – via composition
no specific characteristics

– Class adapter in Java
Technique to use: Implementing the interface and
extending another class

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 18

Adapter
● Implementation

– Pluggable adapter
● First step: Define the smallest subset of operations for

the interface
● Second – decide about implementation approach

a) using abstract operations
Subclasses must implement the abstract Adaptee interface

b) Using delegate objects
forwarding requests to a delegate object

c) Parameterized adapter (Smalltalk)
Here you use one or more “blocks” supporting adaption without
subclassing

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 19

Adapter
● Known Uses (see [GHJ+95])

– ET++Draw,
– InterViews 2.6,
– NEXT AppKit,
– Smalltalk 80 ValueModel Hierarchy
– Event handling in Java-AWT (ActionListener)

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 20

Adapter
● Related Patterns

– Object adapter and Bridge use the same structure
to solve different problems

● Bridge separates interfaces from its implementation so
that they can vary easily and independently

● An Adapter has the idea to change an interface of an
existing object

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 21

Adapter
● Related Patterns

– Decorator enhances another object without
changing the interface – it is more transparent to an
application than an adapter. Decorator could be
used recursively what is not possible with adapters

– Proxy defines a surrogate for another object and
does not change its interface

– Different pointing – the client object interacts with
● the top-level interface – in case of Adapter and Proxy
● the “decorator” bottom classes – in case of Decorator

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 22

Facade
● Intent

– A Facade provides a unified interface for a
component, that means it sums up many interfaces
of a subsystem to one interface

– ... is a Structural Pattern

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 23

Facade
● Motivation

– Structuring a system into subsystems or
components reduces complexity

– General design goal:
● Reduction of communication and dependencies between

subsystems or components
– Offer of a simplified interface  the Facade

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 24

Facade
● Motivation

Client classes

Subsystem classes

Facade

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 25

Facade
● Idea

– A class offers a uniform interface for all classes of a
subsystem / component and delegates requests to
corresponding classes

– This class is named Facade

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 26

Facade
● Applicability

– For a complex subsystem a simple interface should
be offered, which is sufficient for most clients

– Many dependencies between clients and
application classes

– Many tiers of a system are planned
 a facade could be entry point of each tier

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 27

Facade
● Structure

Facade
Subsystem classes

• knows, which subsystem classes are responsible
for which request

• delegates requests to the corresponding
subsystem objects or classes

• implement the functionality of the subsystem
• process the requests delegated by the Facade object
• don't know the Facade object.

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 28

Facade
● Collaboration

– Clients communicate with the subsystem by
sending requests to the Facade.
Facade forwards the requests to the corresponding
objects, maybe additionally has to translate its
interface to the subsystem interfaces

– Clients using the facade don't access subsystem /
component objects directly

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 29

Facade
● Example

Stream

CodeGenerator

Parser

Scanner

Compiler

BytecodeStream

StatementNode

ExpressionNode

VariableNode

ProgramNodeProgramNodeBuilder

StackMaschineCodeGenerator RiscCodeGenerator

Symbol

Token

compile()
Compiler sub-
system classes

Client

public BytecodeStream compile(
 CharArrayReader input)
{
 BytecodeStream output;
 Scanner scanner =
 new Scanner(input);
 ProgramNodeBuilder builder;
 Parser parser;
 parser.parse(scanner, builder);
 RISCCodeGenerator generator =
 new RISCCodeGenerator(output);
 ProgramNode parseTree =
 builder.getRootNode();
 parseTree.traverse(generator);
 return output;
}

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 30

Facade
● Consequences

+ The Facade pattern offers a simple programming
interface: Clients could use subsystems or
components easier, as less objects and classes must
be known

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 31

Facade
● Consequences

+ Facade allows loose coupling between subsystems
and its clients

● Components of a subsystem could be changed
without consequences on the client

● Systems could be divided in layers
● Complex dependencies could be reduced and allow

independent development of subsystems
● Lower compiling dependencies increase the

portability

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 32

Facade
● Consequences

+ Despite the use of the Facade Pattern the access to
the complex classes is still established – the direct
use of the classes of a subsystem is still possible

+ It's possible to do changes in the subsystems without
changing client code. This reduces dependencies in
compiling

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 33

Facade
● Implementation

– Reduction of the client subsystem coupling
● Possible with different concrete subclasses of an abstract

Facade class
● Subclasses of this Facade are standing for different

implementations of a subsystem
● Clients communicate with the subsystem using the

interface of the abstract class and don't notice the
concrete implementation

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 34

Facade
● Implementation

– Public versus private subsystem classes
● A subsystem could offer private and public interfaces
● The Facade would be part of the public interface – it

describes all classes clients could access.
● In a “name space” (package in Java) private interfaces

could be supported, accessible only inside a “name
space”

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 35

Facade
● Known Uses

– Object-Works (OW) Smalltalk Compiler System
– ET++,
– Choices Operating System
– Java Data Base Connectivity (JDBC) in

java.sql package
– java.net.URL
– java.util.concurrent.Executors

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 36

Facade
● Related Patterns

– Abstract Factory can be used with facade to offer
an interface for creating subsystem objects

– Mediator has similar ideas as it abstracts
functionality of existing classes – but Mediator
focuses on abstraction of communication and
centralizes functionality

– If only one Facade object is required it could be a
Singleton

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 37

Facade
● Discussion

– Is Facade really a Design Pattern?
– There is not a typical class diagram structure of it!
– But of course it's needed, because in using Design

Patterns, you end up with flexibility, and lots of
classes

– The Facade pattern is meant to make things more
manageable.

inspired by Heinz M. Kabutz, http://www.javaspecialists.eu/archive/Issue112.html

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 38

Bridge
● Intent:

– Decouple an abstraction from it's implementation so
that the two can vary independently.

– Publish interface in an inheritance hierarchy, and
bury implementation in its own inheritance hierarchy

– ... also known as „Handle / Body“
– ... is a Structural Pattern

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 39

Bridge
● Motivation

– An Abstraction could have many implementations
(Example: Graphical User Interfaces)

– Inheritance has some disadvantages
● less flexible

– if implementation has to be changed during runtime
– if there is a big number of abstract classes and corresponding

implementations
● dependencies in the hierarchy make modifications and

extensions difficult

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 40

Bridge
● Motivation – Example

Window

XWindow MSWindow
IconWindow

XIconWindow MSIconWindow

MacWindow

MacIconWindow

Orthogonal
differentiation of
two aspects

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 41

Bridge
● Idea

– The abstract classes (meaning the interface) and
the implementation classes get concentrated in
separate class hierarchies

– The abstract classes delegate the tasks to the
corresponding implementation classes.

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 42

Bridge
● Applicability

– Abstraction should not be coupled with an
implementation to close (change at runtime)

– Abstraction and implementation should be
extendable with subclasses

– If you extend the system and the number of classes
is growing above average – this is a hint that
objects should be separated

– Several objects should share an implementation,
but the client should not notice

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 43

Bridge
● Structure

Client

Abstraction

RefinedAbstraction

operation()

implementation.
operationImplementation()

ConcreteImplementorA

operationImplementation()

ConcreteImplementorB

operationImplementation()

Implementor

operationImplementation()

implementation
Bridge

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 44

Bridge
● Structure

• Implement the
concrete
specification of the
Implementor
interfaces

Client

Abstraction

RefinedAbstraction

operation()

implementation.
operationImplementation()

ConcreteImplementorA

operationImplementation()

ConcreteImplementorB

operationImplementation()

Implementor

operationImplementation()

implementation

• defines the interface of the implementation class.
It has not to be the same like the Abstraction
interface, typical it offers primitive operations,
Abstraction more complex

• extends behavior of Abstraction

• defines the interface
• holds reference to an

object of the type
Implementor

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 45

Bridge
● Collaboration

– Abstraction forwards client requests to its
Implementor object

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 46

Bridge
● Example

Window

drawText()
drawRect()

implementation.devDrawLine()
implementation.devDrawLine()
implementation.devDrawLine()
implementation.devDrawLine()

XWinImplementor MSWinImplementor

WindowImplementor

devDrawText()
devDrawLine()

implementation

IconWindow

drawBorder()

TransientWindow

drawCloseBox() devDrawText()
devDrawLine()

devDrawText()
devDrawLine()

xDrawString()

xDrawLine()

paintText()

polyLine()

drawRect();
drawText()

The Abstraction classes implement the methods of different
window types in using the methods, made available by the
Implementation classes

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 47

Bridge
● Consequences

+ Decoupling of interface from implementation
● Interface to the client is stable
● Implementation could be exchanged at runtime

+ Extensibility
● The class hierarchies of Abstraction and Implementor could be

extended independently
+ Implementation details could be hided more easily

from the client

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 48

Bridge
● Implementation

– Only one concrete Implementor
An abstract Implementor is not necessary if there is
only one implementation

– Creation of the right Implementor object
Who decides? And how?

● Parameter
● Default values
● Delegation

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 49

Bridge
● Known Uses

– ET++ (Windows)
– libg++ (Sets)
– NeXT AppKit (Images)
– VisualAgeSmalltalk (Collections)

At runtime the collection could be changed
– Java AWT (Peer Interface)

Widgets are created dependently of the operating
system, that is different view on different systems

23/01/08 Uwe Gühl, Software Engineering DP-08 v1.2 50

Bridge
● Related Patterns

– Abstract Factory
An Abstract Factory can create and configure a
particular Bridge

– Object adapter and Bridge use the same structure
to solve different problems

● Bridge separates interfaces from its implementation so
that they can vary easily and independently

● An Adapter has the idea to change an interface of an
existing object

