
By SmartBoard team

Agenda
 Problem & Exercises
 Definition of Adapter
 Object Adaptor
 Class Adaptor
 Pros and Cons
 References

Problems…

110 volts

220 volts

Mr. John

How to fix it ?
 Please help Mr. John..

110 volts

220 volts

Definition
 An Adapter pattern convert the interface of a

class into another interface client expect

 It allows classes to work together that normally
could not because of incompatible interfaces
by wrapping its incompatible interface with
another interface client expect

 The adapter pattern is used so that two or
more unrelated interfaces can work together

Wrapper pattern

For more understandable

Your code External library

110101101
101010110
101110111
001101101

110101101
101010110
101110111
001101101

Adapter

When to use Adapter ?
 You want to use an existing class, and

its interface doesn’t match with the
others you need

 You want to create a reusable co-op
class that cooperates with unrelated
classes with incompatible interfaces

Ways to implement adaptor
 We have 2 ways to implement

 Object Adaptor
 Class Adaptor

Client class

Target class/interface

Adaptee class

A class which user uses

A class/interface that you
want to convert to

A class that is being adapted

Object Adaptor
 Or we can call Object Composition

O

cd Logical View

Client Target

+ request() : vo id

Adaptee

+ speci fi cRequest() : vo id

Adapter

+ request() : vo id

r

cd Adapter

T

LinkedLists

+ insert(int, T) : void
+ rem ove(int, T) : void
+ insertHead(T) : vo id
+ insertT ai l (T) : void
+ rem oveHead() : T
+ rem oveT ai l () : T
+ getHead() : T
+ getT ai l () : T

LinkedLists<T>

T

LinkedListToStackAdapter

- l ist: L inkedLists<T >

+ L inkedListT oStackAdapter(LinkedLists<T >)
+ pop() : Object
+ top() : Object
+ push(Object) : vo id

«interface»
Stack

+ push(T) : void
+ pop() : T
+ top() : T

TestAdapter١

+ m ain(String[]) : vo id

l ist

Example : Object Adapter
 We need to implement Stack
 But only library we have is Linked Lists

Target

Adaptee

Class Adaptor

C

cd Logical View

Client Target

+ request() : vo id

Adaptee

+ speci fi cRequest() : vo id

Adapter

+ request() : vo id

Multiple Inheritance
Can’t do in JAVA

C

cd Adapter٢

Duck

+ duckM akeSound() : String

TestDuckTurkey

+ m ain(String[]) : vo id

Turkey

+ turkeyM akeSound() : String

TurkeyToDuckAdaptor

+ duckM akeSound() : String

Example : Class Adaptor
 We have Turkey and Duck
 And we want Duck to make sounds like Turkey

Target Adaptee

Object Adaptor
 Pros

 More flexible than class Adapter
 Doesn't require sub-classing to work
 Adapter works with Adaptee and all of its

subclasses
 Cons

 Harder to override Adaptee behaviour
 Requires more code to implement properly

R

cd Logical View

Client Target

+ request() : vo id

Adaptee

+ speci ficRequest() : vo id

Adapter

+ request() : vo id

Class Adaptor
 Pros

 Only 1 new object, no additional indirection
 Less code required than the object Adapter
 Can override Adaptee's behaviour as required

 Cons
 Requires sub-classing (tough for single

inheritance)
 Less flexible than object Adapter

L

cd Logical View

Client Target

+ request() : vo id

Adaptee

+ speci fi cRequest() : vo id

Adapter

+ request() : vo id

Pros and Cons
 Pros

 Let the different interface classes can work
together

 Easy maintainable for adaptor class
 Increase the ability of the particular class from

adapting the other classes
 Cons

 Required multiple inheritances in class adaptor,
some prog. languages are not supported

 If adaptee class is huge and some part of it is
not used, adaptor class will be big
unnecessarily.

Why use facade?
One Happy

Meal

Why use facade?(Cons)

HappyMeal
-One burger
-One
Soda(small)
-One French
Fries(Small)
- 10% discount
adding

I need set 4I need
Set 1

I need
Happy

meal 2 sets

I need
lunch

special

Why use facade? (cons.)
 Solve the problem

Happy Meal

Set A

Special Lunch

Set 1

Set 2

Definition

 Make a complex system simpler by providing a
unified or general interface, which is a higher
layer to these subsystems

 make a software library easier to use and
understand, since the facade has convenient
methods for common tasks

 reduce dependencies of outside code on the
inner workings of a library, since most code
uses the facade, thus allowing more flexibility
in developing the system;

 wrap a poorly designed collection of APIs with
a single well-designed API (As per task
needs).

http://en.wikipedia.org/wiki/Software_library

Facade Structure

Easy Example FileFacade
private FileCreator creator = new FileCreator();
private FileRemover remover = new FileRemover();
private FileDuplicator duplicator = new FileDuplicator();

New File
 creator.createFile();Delete File
 remover.removeFile();Move File
 duplicator.cloneFile();
 remover.removeFile();
Copy File
 duplicator.cloneFile();Rename File
 duplicator.cloneFile();
 remover.removeFile();

Complex Example SwingFacade

Pros & Cons
 Pros

 Hides the implementation from clients,
 Reduces class dependencies in large

systems
 Easier to reuse or maintain if the routine is

changed, or even there’s a new routine.
 Cons

 The subsystem class is not encapsulated,
clients still can access it.

References
 http://en.wikipedia.org/wiki/Wrapper_patt

ern
 http://developerlife.com/tutorials/?p=19#Why
 http://en.wikipedia.org/wiki/Fa

%C3%A7ade_pattern
 http://c2.com/cgi/wiki?AdapterPattern
 http://userpages.umbc.edu/~tarr/dp/lectu

res/Adapter-2pp.pdf

http://developerlife.com/tutorials/?p=19

