

Agenda

Problem & Exercises
Definition of Adapter
Object Adaptor
Class Adaptor

Pros and Cons
References

Problems...

How to fix it ?

® Please help Mr. John..

Definition

© An Adapter pattern convert the interface of a
class into another interface client expect

® |t allows classes to work together that normally
could not because of
by wrapping its incompatible interface with
another interface client expect

® The adapter pattern is used so that two or
more unrelated interfaces can work together

For more understandable

Your code External library
110101101
101010110
101110111
001101101

Adapter

When to use Adapter ?

® You want to use an existing class, and
its interface doesn’t match with the
others you need

® You want to create a reusable co-op
class that with unrelated
classes with incompatible interfaces

Ways to implement adaptor

©® We have 2 ways to implement
* Object Adaptor
* Class Adaptor

Client class
Target class/interface -

S S——

Object Adaptor

® Or we can call Object Composition

Example : Object Adapter

©® We need to implement

©®© But only library we have is Linked Lists

public static void main(String []Jargs)
{

LinkedLists<Object> list = new LinkedLists<Object>():
LinkedListToStackAdapter 1 = new LinkedListToStackAdapter (list):
l.pushi5):

l.pushi™ssss");

l.pushi{'c'):

l.push(2.22);

System.out.printlnil.top()):;

System.out.println(l.pop()):

public interface Stack<T> |{
public void push (T t):
public T pop ():
public T top ():

Target

«interface»

<terminated= Client [Java Appli TestAdapter Stack
2.22) e o + push(T) : void
2.22 main(String[]) : voi + pop(): T

+ top(): T

ublic class LinkedListToStacklAdapter<T> extends LinkedLis

private LinkedLists<T> list;

public LinkedListToStackAdapter (LinkedLists<T> list)

{ this.li=t = list; }
public Object popi()
{ return list.removeTail(): }

public Cbject top() {
return list.getTaili):
¥
public void push(Object t) {

LinkedLists

insert(int, T) : void
remove(int, T) : void
insertHead(T) : void
insertTail(T) : void
removeHead(): T
removeTail(): T
getHead(): T
getTail(): T

+ + + + + + + o+

LinkedListToStackAdapter

LinkedLists<T>

- list: LinkedLists<T>

pop(): Object
top() : Object
push(Object) : void

+ o+ o+ +

LinkedListToStackAdapter(LinkedLists<T>)

list.insertTail((T)t):|)

Class Adaptor

cd Logical View
Client R

+ specificRequest() : void

Adapter

+ request() : void

Example : Class Adaptor

©® We have Turkey and
® And we want to make sounds like Turkey

cd AdapterY

TestDuckTurkey

+ main(String[]) : void

public class TestDuckTurkey {
public static void maini(3tring []args)

TurkeyToDucklidaptor adapt =
new TurkeyToDuckhdaptor():

adapt .duckMakeSound() ; TurkeyToDuckAdaptor

+ duckMakeSound() : String

public class TurkeyToDucklidaptor extend
public String duckMakeSound()

return turkevyMakeSound() :

Object Adaptor

® Pros

* More flexible than class Adapter
* Doesn't require sub-classing to work

* Adapter works with Adaptee and all of its
subclasses

® Cons

* Harder to override Adaptee behaviour
* Requires more code to implement properly

Class Adaptor

® Pros
- Only 1 new object, no additional indirection
* Less code required than the object Adapter
- Can override Adaptee's behaviour as required

® Cons

- Requires sub-classing (tough for single
inheritance)

* Less flexible than object Adapter

Pros and Cons

Pros

Let the different interface classes can work
together

Easy maintainable for adaptor class

Increase the ability of the particular class from
adapting the other classes

Cons

Required multiple inheritances in class adaptor,
some prog. languages are not supported

If adaptee class is huge and some part of it is
not used, adaptor class will be big
unnecessarily.

Facade pattern

| need

Happy
meal 2 sets | need set 4

lunch
special

Get these
commands to

our pos

e arn to
machine. LA

solve It

Happy Meal
Special Lunch

Definition

Make a complex system simpler by providing a
unified or general interface, which is a higher
layer to these subsystems

HELGCE: _ easler to use and_
understand, since the facade has convenient
methods for common tasks

reduce dependencies of outside code on the
Inner workings of a library, since most code
uses the facade, thus allowing more flexibility
In developing the system,;

wrap a poorly designed collection of APIs with
a single well-designed API (As per task
needs).

http://en.wikipedia.org/wiki/Software_library

Facade Structure

I". z/ "'

—

=N

'n... III‘ ‘-M"‘-_‘_
Complex Subsystema®™or . / I Complex Subsystem

Easy Exammpa

removeFile) | voil + cloneFile{) : void

Complex Example SwingFacade

FacadeClient

+main(args(]: String): void

Swing subsystem

"Facade" IW "

JOptionPane

BorderLayout

FlowLayout

java.awt.Window

T

java.awt.Dialog

W~

FileDialog

JPanel

BorderFactory

Pros & Cons

Pros
Hides the implementation from clients,

Reduces class dependencies in large
systems

Easier to reuse or maintain if the routine is
changed, or even there’s a new routine.
Cons

The subsystem class is not encapsulated,
clients still can access |it.

References

http://en.wikipedia.org/wiki/\Wrapper_patt
ern

http://en.wikipedia.org/wiki/Fa
%C3%A7ade pattern

http://c2.com/cgi/wiki?AdapterPattern

http://userpages.umbc.edu/~tarr/dp/lectu
res/Adapter-2pp.pdf

http://developerlife.com/tutorials/?p=19

