
Lesson Design Pattern 09
Observer, Mediator

v1.0

Uwe Gühl

Fall 2007/ 2008

Software Engineering

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 2

Contents
● Observer
● Mediator

Used sources:
– [GHJ04] Gamma, Helm, Johnson, Vlissides:

Design Pattern, Addison Wesley, 2004
– [Hus08] Vince Huston: Design Pattern,

www.vincehuston.org/dp/, 2008

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 3

Observer
● Intent:

– Defines a 1:n (one to many) relationship, so that if
an object is changing, all dependent objects could
be updated automatically

– also known as
● Dependents
● Publish - Subscribe

– ... is a Behavioral Pattern

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 4

Observer
● Motivation

– Breakdown of a system in cooperating classes:
● Changes of an object affect in the system several

different places
● Objects should react on status changes of specific

objects
– Goal: Consistent status of depending objects

without close coupling of the concerned objects
 Reuse

– GUI toolkits often differ between displaying and
basic application data (layer model)

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 5

Observer
● Example

– Different graphical presentations of numerical
values

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 6

Observer
● Example [Hus08]

Some auctions demonstrate this pattern.
Each bidder possesses a numbered paddle that is used to indicate a bid.
The auctioneer starts the bidding, and "observes" when a paddle is raised to accept the bid.
The acceptance of the bid changes the bid price
which is broadcast to all of the bidders in the form of a new bid.
[Michael Duell, "Non-software examples of software design patterns",
Object Magazine, Jul 97, p54]

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 7

Observer
● Ideas

– Implementation of a „publish subscribe“ interaction
– All observer register at a sender object („subject“)
– The subject holds a list of all registered observer
– If the state is changing, the subject informs all

registered observers, and they could react
adequate

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 8

Observer
● Structure

Subject

attach(Observer)
detach(Observer)
notify()

Observer

update()

*

ConcreteSubject

getState()
setState()

subjectState

ConcreteObserver

update()

observerStatesubject

for all o in observers {
 o.update()
}

• knows its Observers.
Any number of Observer could
observe a Subject

• defines an interface so that
Observers could attach or
detach

• contents for
ConcreteObserver
objects interesting states

• informs its Observer it
its state is changing

• proceeds notify() in the
setState() method

• may send a self
reference, so that the
Observer could differ
between different
Subjects

• defines an interface to update
objects that have to be informed
after changes of the Subject

• derived classes have to
implement „update()“

• has a reference to
ConcreteSubject

• has states, which
should be consistent
to the states of the
Subject

• implements the
Observer update
interface to keep its
state consistent with
the state of the
Subject

observerState =
 subject.getState()

return
 subjectState

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 9

Observer
● Example

Model

attach(Observer)
detach(Observer)
notify()

observers

Diagram

update()
redraw()

values: Collection

Umsatz

getMonthlySales(): Collection
setMonthlySales(Collection)

monthlySales: Collection

BarChart

update()
redraw()

subject

PieChart

update()
redraw()

subject

*

values = subject.getMonthlySales();
this.redraw():

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 10

Observer
● Collaboration

How do the objects work together?
– aConcreteSubject registers all Observers to

achieve consistence among them
– aConcreteObserver requests after an advice note

about a status change the corresponding
information, e. g. to update the representation

– If an Observer is responsible for information to be
updated for a Subject

● it first sends this information to the Subject and
● waits for a message of the Subject before updating itself

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 11

Observer
● Collaboration - Example

s :Sales d1 :BarChart d2 :PieChart

attach(d1)

attach(d2)

setMonthlySales(Collection)

notify()

update()

getMonthlySales()

update()

getMonthlySales()

...

aConcreteSubject aConcreteObserverA aConcreteObserverB

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 12

Observer
● Applicability

Use the Observer Pattern if
– an abstraction has two points of view with

corresponding dependencies
– an encapsulation allows variation and independent

reuse
– the change of an object causes follow-up changes

of other states; unknown how many objects are
affected

– an object should be capable to inform others
without deep know-how about these objects (loose
coupling)

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 13

Observer
● Consequences

+ Subjects and Observer are loose coupled –
so they could vary independently
 Independent reuse

+ Minimal coupling mean for the Subject:
• only one list of Observer (simple interface)
• concrete classes of the Observer are not known
 Level comprehensive

collaboration possible
GUI2

Application

Database

GUI 1Observer

Subject

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 14

Observer
● Consequences

+ Broadcast principle
Message of a Subject has no direct receiver
• An update message will be sent to all registered

Observer
• The only responsibility of the Subject: Sending

messages
• Observer work on the message in their own

responsibility

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 15

Observer
● Consequences

– Unexpected updates
• Observer don't know each other
• This could result in complex dependencies so that

even harmless changes lead to update cascades
• The minimal observer implementation does not

provide information what exactly has been changed
 Extensibility

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 16

Observer
● Implementation

1)Who stores the
Mapping between
Subject and
Observer?

● Alternative 1
Subject: Efficient,
but too expensive
with many Subjects
and few Observer;
example:

import java.util.*; // because of Iterator, Vector
public class Subject {
 private Vector observers = new Vector();
 public void attachObserver(Observer anObserver) {
 observers.add(anObserver);
 }

 public void detachObserver(Observer anObserver) {
 observers.remove(anObserver);
 }

 public void notifyObservers() {
 Iterator elements = observers.iterator();
 while (elements.hasNext()) {
 ((Observer)elements.next()).update();
 }
 }
}

method has to be
implemented by every

Observer

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 17

Observer
● Implementation

1)Who stores the Mapping between Subject and
Observer?

● Alternative 2
Global repository (e. g. hash table):
Slower access, but in circumstances resource saving,
if only some of the potential Subjects got observed

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 18

Observer

public class Subject {
private static Hashtable observeables = new Hashtable();
public void attachObserver(Observer anObserver) {
Set observers = (Set) observeables.get(this);
if (observers == null) { // first observer for this subject

observers = new HashSet(); // so we have to create a collection first
observeables.put(this, observers);

}
observers.add(anObserver);

}
public void detachObserver(Observer anObserver) {

Set observers = (Set) observeables.get(this);
if (observers != null) {

observers.remove(anObserver);
}

}
public void notifyObservers() {

Set observers = (Set) observeables.get(this);
if (observers != null) {

Iterator elements = observers.iterator();
while (elements.hasNext()) {

((Observer) elements.next()).update();
}

}
}

1)Example: Implementation using a global repository

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 19

Observer
● Implementation

2)Observer observes many Subjects
Question: Which Subject sent notification?
 Extension of the update interface
to identify the causing Subject

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 20

Observer
● Implementation

2)Example: Extension of the update interface
Subject
public void notifyObservers() {
 Iterator elements = observers.iterator();
 while (elements.hasNext()) {
 ((Observer)elements.next()).update(this);
 }
}

Client
public void update(Subject aSubject) {

if (aSubject instanceof Person) {
// do some person related stuff

}
else {

// do some other stuff
}

}

Subject passes itself

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 21

Observer
● Implementation

3)Who initiates update?
● Subject after status change

– All setter methods call notify after a change
+ clear responsibilities
– many status changes many updates
– inefficient by redundant intermediate updates
– „Flattering“

● Clients control
– Controlled notify request calls on demand

+ More efficient, as status changes could be collected
– Error prone in implementation

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 22

Observer
● Implementation

4)Hanging references to deleted Subjects
If a Subject gets deleted you have to handle the
references to the Observers

● Bad idea: Ordinary deleting Observer
– Dependency to other objects possible
– Observer could listen to other Subjects

● Better: Notify Observer, so they could decide what to do

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 23

Observer
● Implementation

5)Ensuring the consistent state of the subject,
before notify() gets triggered

● Example: Identity and password
● Potential problem in extending of setter methods in

subclasses
● Idea: Using the Template Method in the abstract Subject

Class, where notify() is the last operation in the template
method

Subject

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()
...
notify()

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 24

Observer
● Implementation

6)How much information does the subject offer in the
update method?

● Push model
Assumption: Subject knows something about Observers
need

– Subject sends all detailed information to all Observer
● Pull model

Assumption: Subject ignores its Observers
– Subject sends only a minimal notify()
– Observer demands for more information if required

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 25

Observer
● Implementation

7)Registration only for specific information
● Observer registers only for special aspects
void Subj::Attach(Observer*, Aspect& i);

● Notification depending on parameter: Subject supplies
changed aspect to observers in the update operation
void Obs::Update(Subject*, Aspect& i);

● Implementation effort is worth if there are many possible
aspects

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 26

Observer
● Implementation

7)Example: Registration only for specific information
Subject
public void notifyObservers(String name) {

Iterator elements = observers.iterator();
while (elements.hasNext()) {

((Observer)elements.next()).update(this, name);
}

}

Client
public void update(Subject aSubject, String attributeName) {

if (aSubject instanceof Person) {
if (attributeName.equals("firstName")) {

// update first name related data
}

...
}

}

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 27

Observer
● Implementation

8)Encapsulating complex update semantics
● A Change-Manager could be established to handle

complex dependency relationships between subjects and
observers

● Its responsibilities
– Mapping of a subject to its observers
– Defining a particular update strategy
– Updating of all dependent observers at the request of a subject

● The Change-Manager is an instance of the Mediator
pattern

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 28

Observer
● Implementation

9)Combination of Observer and Subject in a parent
class in programming languages without multiple
inheritance

● An object could have the Subject and Observer role at
the same time

● makes Observer chains possible
● realized in Smalltalk

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 29

Observer
● Implementation

9)Java offers a standard implementation with
– Class java.util.Observable (meaning 'Subject') and
– Interface java.util.Observer

● Problem: Only usable, if the corresponding Subject class
is not already subclass of another parent class

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 30

Observer
● Known Uses (see [GHJ+95])

– MVC (Model-View-Controller) paradigm, e. g.
● Smalltalk
● Jakarta Struts
● Java Swing

– JComponent
– PropertyChangeListener

– Interviews, Andrew Toolkit, Unidraw
– ET++, THINK class library
– Web architectures

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 31

Observer
● Known Uses

– Model View Controller (MVC)

Model

attach(Observer)
detach(Observer)
notify()
getState()
setState()

View

update()

0..n

Controller

update()

observerState

subject

subjectState
observer

• treats User Interface events and
communicates with the model
(„Feel“, „Input“)

• activates changes in the model
• often specialized for a specific

view

• Presentation of data
(„Look“, „Output“)

• reads only data, but does
not initialize changes

• contains data,
business logic

• independent
from GUI

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 32

Observer
● Known Uses

– Typical
web
application

Application server

Browser

Database
server

Servlet

Java
Server

Page (JSP)

Java
Server

Page (JSP)

Java
BeansBrowser

View

View

Controller

Model

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 33

Observer
● Related Patterns

– Mediator
● The Change-Manager described in Implementation 8)

acts as a Mediator
– Singleton

● The Change-Manager could be realized as a singleton to
make it unique and global accessible

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 34

Mediator
● Intent:

– defines an object to encapsulate the interaction of
several objects belonging together

– supports loose coupling, avoiding explicit
referencing of multiple objects among each other

– lets vary interaction of objects independently
– allows a flexible, independent interaction of the

objects among themselves
– a Mediator acts like an information broker
– ... is a Behavioral Pattern

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 35

Mediator
● Motivation

– Object oriented design promotes the distribution of
behavior between different objects

– A complex manifold connection structure between
objects is possible – in the worst case any object is
combined with any object

● The system is acting like a monolith
● A change of behavior is difficult to achieve, as the

behavior could be distributed about many objects

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 36

Mediator
● Example

Implementation of dialog boxes in a graphical
user interface with
– Buttons
– Menus, and
– Entry fields

● Dependencies:
– Button gets

disabled under
determined
condition

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 37

Mediator
● Example – Object Diagram

aW :WidgetDirector

aC :Client
director

aL :ListBox
 director

anE :Entry
 director

aB :Button
 director

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 38

Mediator
● Example – Sequence Diagram

aC :Client aW :WidgetDirector aL :ListBox

WidgetChanged()

showDialog()

GetText()

update()

Mediator Colleagues

anE :Entry

text

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 39

Mediator
● Example – Class Diagram

Director

WidgetDirector Entry

Widget
director

ListBox

ShowDialog()
CreateWidgets()
WidgetChanged(Widget)

CreateWidgets()
WidgetChanged(Widget)

Changed()

director.WidgetChanged(this)

getText() update()

field

list

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 40

Mediator
● Example [Hus08]

The control tower at a controlled airport demonstrates this pattern very well.
The pilots of the planes approaching or departing the terminal area communicate
with the tower rather than explicitly communicating with one another.
The constraints on who can take off or land are enforced by the tower.
It is important to note that the tower does not control the whole flight.
It exists only to enforce constraints in the terminal area.
[Michael Duell, "Non-software examples of software design patterns",
Object Magazine, Jul 97, p54]

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 41

Mediator
● Applicability

Use the Mediator Patter, when ...
– a set of objects communicates in a specified but

complex kind among each other.
The resulting dependencies are

● not structured
● difficult to understand

– reuse of an object is difficult, because it is
referencing to and communicating with many other
objects

– a distributed behavior between different classes
should be controlled without a set of subclasses

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 42

Mediator
● Structure

Mediator

ConcreteMediator

ConcreteColleague1

Colleague

• Defines an interface to
communicate with
Colleague objects

• Each Colleague class knows its
Mediator object

• The communication with another
Colleague happens indirectly via the
Mediator

• implements cooperating
behavior

• knows and maintains the
ConcreteColleagues

mediator

ConcreteColleague2

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 43

Mediator
● Collaboration

– Colleagues send and get requests from a Mediator
object

– The Mediator implements the cooperating
behaviour with coordinating the requests between
Colleagues

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 44

Mediator
● Consequences

+ Limiting subclasses
• Localization of behavior, that otherwise would be

distributed between different objects
• A change of this behavior requires only a subclass

of the Mediator. Colleagues could be reused as
they are

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 45

Mediator
● Consequences

+ Decoupling of Colleagues
• With loose coupling Mediator and Colleague

classes could be modified independently from each
other

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 46

Mediator
● Consequences

+ Simplification of the objects protocols.
Only the Mediator knows the Colleagues, so

• 1:n relationship (Mediator ⇔ Colleague) instead of
• n:n relationship (Colleagues among each other)
The number of interconnections is reduced.
As a results, the system behavior is easier to ...
• understand
• maintain
• extend

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 47

Mediator
● Consequences

+ Abstraction of the cooperation of the objects. Focus is
how the objects interact with each other –
independent from their individual behavior

+/–Centralization of control
• Complexity of the communication gets transferred

from the system into the Mediator
• Typically the Mediator gets more complex as every

individual Colleague
• The Mediator itself could get monolithic and for this

reason complex and difficult to maintain

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 48

Mediator
● Implementation

– Omit the abstract Mediator
● If the Colleagues work only with one ConcreteMediator

an additional abstraction is not necessary

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 49

Mediator
● Implementation

– Communication between Mediator and Colleagues
... is necessary, if an ‚interesting‘ event happens;
ideas:

● Implementation of the Mediator as Observer in using the
Observer Pattern

● Realization of a specific communication interface inside
the Mediator to achieve a ‚more direct‘ communication to
the Colleagues; e. g. with hand-off of a self-reference

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 50

Mediator
● Known Uses (see [GHJ+95])

– ET++ and the THINK C library use „Director“
objects, acting as Mediators between widgets

– Smalltalk/V for Windows – the application
architecture is based on a Mediator structure

– Coordination of complex updates; example:
● In using of the observer pattern a „change manager“

could mediate between Subject and Observer to avoid
redundant actualizations

● The change manager gets informed as soon as an object
is changing: He coordinates all the necessary updates in
informing only the objects depending on this object

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 51

Mediator
● Related Patterns

– Different trade-offs how to decouple senders and
receivers [p347, GHJ04]

● Chain of Responsibility
passes a sender request along a chain of potential
receivers

● Command
normally specifies a sender-receiver connection with a
subclass.

● Mediator
has senders and receivers reference each other indirectly

● Observer
defines a very decoupled interface that allows for multiple
receivers to be configured at run-time

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 52

Mediator
● Related Patterns

– Mediator and Observer are competing patterns
[p346, GHJ04]

● Observer distributes communication by introducing
"observer" and "subject" objects

● Mediator encapsulates the communication between other
objects

● It seems to be easier to make reusable Observers and
Subjects than to make reusable Mediators

– Mediator can leverage Observer for dynamically
registering colleagues and communicating with
them [p282, GHJ04]

05/02/08 Uwe Gühl, Software Engineering DP-09 v1.0 53

Mediator
● Related Patterns

– Difference between Mediator and Facade
[p193, GHJ04]

● Mediator is similar to Facade in that it abstracts
functionality of existing classes.

● Mediator allows cooperative behavior between objects
and the protocol is multi directional

● Facade abstracts a subsystem of objects to offer an
easier interface. It is not known by subsystem classes.
The protocol is unidirectional (communication only to the
subsystem, not vice versa)

