
Observer Pattern

Pretest : create class diagram

Weather Monitoring Station Application

� Objective:

– Design an internet-based Weather
Monitoring Station application that
pulls weather-related data from a
weather station and displays it onto a
device–Temperature, humidity, and
barometric pressure data is sent to the
weather station

Weather Monitoring Station

Application

Weather Monitoring Station

Application

Solution

Observer

Intent

� Defines a one-to-many dependency
among objects so that when one object
changes state, all its dependents are
notified and updated automatically

� A way of notifying change to a number
of classes

� Also known as
- Dependents
- Publish-Subscribe

� Motivation

- To avoid making classes tightly
coupled that would reduce
their reusability

Observer

Observer

� Design Principle

– Strive for loosely coupled designs among objects that

interact

� • Use this pattern when:
–A change to one object requires changing others, and

the number of objects to be changed is unknown
– An object should be able to notify other objects

without making assumptions about who these objects are
Avoids having these objects tightly coupled

Observer (Continued)

Class Structure

Subject
Knows it observers
Has any number of observer
Provides an interface to attach and detaching observer object at run time

Observer
Provides an update interface to receive signal from subject

ConcreteSubject
Store subject state interested by observer
Send notification to it's observer

ConcreteObserver
Maintain reference to a ConcreteSubject object
Maintain observer state
Implement update operation

Collaborations

� ConcreteSubject notifies its observers
whenever a change that could make it's state
inconsistent with observers.

� After a ConcreteObserver be notified, it
queries the subject state by using the

GetState function. ConcreteObserver uses
this information to change it's internal state

Implementation Issues

� Mapping subjects to their observers. A subject can keep track
it's list of observers as observer reference or in a hash table.

� Observing more than one subject. It might make sense to
implement many-to-many relationship between subject and
observer. The Update interface in observer has to know which
subject is sending the notification. One of the implement is that
subject can pass itself as a parameter in the Update operation.

� Who triggers the update (Notify operation in Subject).
State setting operation in subject to trigger Notify.
Observer to trigger Notify.

� Push model: subject sends details change information to
observer.

Implementation Issues(Continued)

� Dangling references to deleted subjects.
Deleting a subject or a observer should not produce
dangling references.

� Making sure subject state is self-consistent
before notification. Otherwise, an observer can
query subject's intermediate state through GetState
operation.

� Avoiding observer-specific update protocols:
push and pull models.

Implementation Issues(Continued)

� Poll model: subject sends minimum change information to
observer and observer query for the rest of the information.

� Specifying modifications of interest explicitly. One can
register observer for only specific events. This can improve
update efficiency.

� Encapsulating complex update semantics. For any complex
set of subject and observer relationships, one can implement
Change Manage to handle their Update operation. For example,
if multiple subjects have to change state before any of their
observers can update. Change Manager can handle change and
update sequence for the operation.

Example Usage - Simple

An example of using the observer pattern is the graphical interface

toolkit which separates the presentational aspect with
application data. The presentation aspect is the observer part and
the application data aspect is the subject part.

In a spreadsheet program, the Observer pattern can be applied as in
the following diagram. Each rectangular box in the diagram in an

object. SpreadSheetFormula, BarGraph, and PieChart are the
observer objects. SpreadsheetData is the subject object. The
SpreadsheetData object notifies its observers whenever a data
changes that could make it's state inconsistent with the observers.

Example Usage - Simple

Request subject for change information in order to
update itself accordingly

• Spreadsheet
Formula

• Bar Graph
• Pie Char

Observ
er

Send notify signal to observer object whenever data
changes

• Spreadsheet
Data

Subject

Applicability

Use the observer pattern in any of the following situations:

� When the abstraction has two aspects with one dependent
on the other. Encapsulating these aspects in separate objects
will increase the chance to reuse them independently.

� When the subject object doesn't know exactly how many
observer objects it has.

� When the subject object should be able to notify it's observer
objects without knowing who these objects are.

Consequences

� Further benefit and drawback of Observe pattern include:

� Abstract coupling between subject and observer, each can be extended and
reused individually.

� Dynamic relationship between subject and observer, such relationship can
be established at run time. This gives a lot more programming flexibility.

� Support for broadcast communication. The notification is broadcast
automatically to all interested objects that subscribed to it.

� Unexpected updates. Observes have no knowledge of each other and blind
to the cost of changing in subject. With the dynamic relationship between
subject and observers, the update dependency can be hard to track down

A Silly Text Processor:

Counts the number of words that start with an
uppercase letter

Save the lines to a file

Shows the progress (e.g., then number of
lines processed)

A complete example

A complete example (Cont'd)

Some Observations:

This is not going to make us any money

We can use it to explore different designs

A complete example (Cont'd)

A Bad Design:

A complete example (Cont'd)

A Better Design:

A complete example (Cont'd)

A Better Design:

This design is better.

It is, however, too tightly coupled.

A complete example (Cont'd)

How to design it better?

A complete example (Cont'd)

Using the Observer Pattern

LineReader
+LineReader()
+Start()

LineSubject
+addObserver(obs:LineObserver)
+removeObserver(obs:LineObserver)
+notifyObserver()
+getLine()

Implement

LineObserver
+handleLine(source:LineSubhect)

LineArchiver
+LineObserver()
+close()
+save()

UCWordCounter
+UCwordCounter()
+count()
+displayCount()

ProgressWindow
+ProgressWindow()
+indicateProgress()
+performLayout()

SillyTextProcessor
+Main()

Next
Slide

Good things to know about the
Observer Pattern

� Most heavily used
(Compared to real life: Subscription to a
newspaper or magazine)

� Incredibly useful

� Keeps objects in the know

� Give objects the maximal freedom
(whether they want to be informed)

Known uses

� Smalltalk Model/View/Controller (MVC). User
interface framework while Model is subject and View
is observer.

� Smalltalk ET++, and the THINK class library provide
the general Observer pattern.

� Other user interface toolkits such as InterViews, the
Andrew Toolkit, and Unidraw.

Related Pattern

� Mediator : Define an object that encapsulates how a
set of objects interact. Mediator promotes loose coupling
by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently

� Singleton : Ensure a class only has one instance,
and provide a global point of access to it.

Design Principle Challenge

� Identify the aspect of your application that
vary and separate them from what stays the
same.

� Program to an interface, not implementation.

� Favor composition over inheritance.

(Hint: think about how observers and subjects
work together.)

Design Principle Challenge

� Design Principle

Identify the aspects of
your application that
vary and separate them
for what stays the
same.

The thing that varies in the
Observer Pattern is the
state of the Subject and the
number and the type of
Observers. With this
pattern, you can vary the
objects that are dependent
on the state of the subject,
without having to change
that Subject. That’s called
planning ahead!

Design Principle Challenge

� Design Principle

Program to an
interface, not an
implementation.

Both the Subject and Observer
use interfaces. The Subject
keeps track of objects
implementing the Observer
interface, while the observers
register with, get notified by,
the Subject interface. As we’ve
seen, this keeps things nice
and loosely couples.

Design Principle Challenge

� Design Principle

Favor composition over
inheritance.

This is a hard one, hint:
think about how
observers and subjects
work together.

The Observer Pattern uses
competition to compose any
number of Observers with
their Subjects. These
relationship aren’t set up by
some kind of inheritance
hierarchy. No, they are set
up at runtime by
composition!

A few questions...
1. One subject likes to talk to observers.

2. Observers are on the Subject.

3. A Subject is similar to a

4. can manage your observers for you

5. Observers like to be when something new happens.

6. Java framework with lots of Observers.

7. You want to keep your coupling

8. Program to an not an implementation.

9. The WeatherData class the Subject interface.

A few questions... (Cont'd)
Solutions

0. One subject likes to talk to many observers.

1. Observers are dependent on the Subject.

2. A Subject is similar to a publisher.

3. Observable can manage your observers for you.

4. Observers like to be notified when something new
happens.

5. Java framework with lots of Observers: Swing

6. You want to keep your coupling loose.

7. Program to an interface not an implementation.

8. The WeatherData class implements the Subject interface.

Conclusion

Conclusion

� Design Principle
– Strive for loosely coupled designs
among objects that interact

� Use this pattern when:

- A change to one object requires changing others, and

thenumber of objects to be changed is unknown

- An object should be able to notify other objects
without making assumptions about who these objects are

+ Avoids having these objects tightly coupled

Reference

� en.wikipedia.org/wiki/Observer_pattern

� Head First Design Patterns 2004 O'Reilly
First Edition

� https://users.cs.jmu.edu/bernstdh/web/comm
on/lectures/slides_observer_pattern.php

� http://www.hillside.net/

