
Command Pattern

XinniX Soft

Introduction

• The Command pattern is a design pattern
in which objects are used to represent
actions. A command object encapsulates
an action and its parameters.an action and its parameters.

Introduction

Create an Order

Take an OrderTake an Order

Order Ups
cook

Command Pattern UML

Participants

– Command
• declares an interface for executing an operation.

– ConcreteCommand (PasteCommand,
OpenCommand)

• defines a binding between a Receiver object and an action.
• implements Execute by invoking the corresponding • implements Execute by invoking the corresponding

operation(s) on Receiver.

– Client (Application)
• creates a ConcreteCommand object and sets its receiver.

– Invoker
• asks the command to carry out the request.

– Receiver
• knows how to perform the operations associated with

carrying out a request. Any class may serve as a Receiver.

sequence diagram

Implementation (Command)

public interface Command {
public abstract void execute ();

}

Implementation(invoke)

class RemoteSwitch {
private Command onCommand;
private Command offCommand;

public Switch(Command Up, Command Down) {
UpCommand = Up;
DownCommand = Down;

}

public void on() {
onCommand . execute () ;

}

public void off() {
offCommand . execute ();

}
}

Implementation (Receiver -
Fan)

class Fan {

public void startRotate() {
System.out.println("Fan is rotating");

}}

public void stopRotate() {
System.out.println("Fan is not

rotating"); }
}

Implementation (Receiver -
Light)

class Light {

public void turnOn() {
System.out.println("Light is on ");

} }

public void turnOff() {
System.out.println("Light is off"); }

}

Light

Fan Vs Light

Fan

• startRotate()
• stopRotate()

Light

• turnOn()
• turnOff()

Implementation(ConcreteCommand)
[Light]

Implementation (ConcreteCommand)
[Fan]

Implementation (client)

public class TestCommand {
public static void main(String[] args) {

Light light = new Light();
LightOnCommandLightOnCommand lightOnlightOn = new = new LightOnCommandLightOnCommand(light); (light);
LightOffCommandLightOffCommand lightOfflightOff = new = new LightOffCommandLightOffCommand(light);(light);LightOffCommandLightOffCommand lightOfflightOff = new = new LightOffCommandLightOffCommand(light);(light);
RemoteSwitch remoteSwitch = new RemoteSwitch(lightOn , lightOff);
remoteSwitch.on();
remoteSwitch.off();

Fan fan = new Fan();
FanOnCommandFanOnCommand fanOnfanOn = new = new FanOnCommandFanOnCommand(fan); (fan);
FanOffCommandFanOffCommand fanOfffanOff = new = new FanOffCommandFanOffCommand(fan);(fan);
RemoteSwitch remoteSwitch2 = new RemoteSwitch(fanOn , fanOff);
remoteSwitch2.on();
remoteSwitch2.off();

What is happen? UML Help you

on()
off()

What ‘s happen? With state diagram

Create
Command
Object()

execute()

Client

1

3
setCommand()

execute()

Action1()

Action2()

Command

Invoker

Command

Receiver

2

3

Questions?

Diner Command Pattern

Waitress

Short Order cook

Command

Execute

Order

OrderUP()

Short Order cook

Customer

takeOrder()

CLient

Invoker

Receiver

setCommand()

Conclusion

• The Command design pattern
encapsulates the concept of the command
into an object. The issuer holds a
reference to the command object rather reference to the command object rather
than to the recipient. The issuer sends the
command to the command object by
executing a specific method on it. The
command object is then responsible for
dispatching the command to a specific
recipient to get the job done.

Reference

• Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides Design Patterns Elements
of Reusable Object-Oriented Software
Addison-Wesley, 1995 Dr. Dobb's Journal,
January 1998"Java ReflectionNot just for tool January 1998"Java ReflectionNot just for tool
developers," by Paul Tremblett
http://www.ddj.com/articles/1998/9801/9801c/
9801c.htm

• Sun's Reflection page
http://java.sun.com/docs/books/tutorial/reflect
/index

