
Lesson Design Pattern 11
Flyweight

v1.0

Uwe Gühl

Fall 2007/ 2008

Software Engineering



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 2

Used sources:
– [GHJ04] Gamma, Helm, Johnson, Vlissides: 

Design Pattern, Addison Wesley, 2004
– [Hus08] Vince Huston: Design Pattern, 

www.vincehuston.org/dp/, 2008
– [Wik08] 

http://en.wikipedia.org/wiki/Flyweight_pattern, 2008



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 3

Flyweight
● Intent:

– Use sharing to support large numbers of fine-
grained objects efficiently

– minimizes memory occupation by sharing as much 
as possible with other similar objects

– ... is a Structural Pattern



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 4

Flyweight
● Motivation

– Problem: If you use really many objects of a specific 
class a naive implementation would be really 
expensive

– Example: Object oriented document editors
● Tables and figures as objects
● characters as objects? ... usually not 

– would be nice because you get flexibility even in the finest level
– new characters could be supported easily
– drawback: costs in memory and run-time overhead – maybe 

hundreds of thousands of character objects needed
– Idea: Using the Flyweight pattern



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 5

Flyweight
● Introducing example (1)

flyweight_1

Application

object_1

object_2

object_3

object_n

Intrinsic state
(can be shared)

Extrinsic state
(can't be shared)

flyweight_2



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 6

Flyweight
● Motivation

– A flyweight is a shared object that can be used in 
multiple contexts simultaneously.

– A flyweight acts as an independent object in each 
context



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 7

Flyweight
● Motivation

– Key concept:
● Intrinsic state (context independent)

– stored in the flyweight
– consists information that is independent of the flyweight's context
– sharable

● Extrinsic state (context dependent)
– depends on and varies with the flyweight's context
– can't be shared
– Client objects are responsible for passing extrinsic state to 

flyweights when requested



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 8

Flyweight
● Introducing example (2)

Logically: Physically:
column

row

p a s s p o r t

row row

column

row

p a s s p o r t

row row

a b c d e f g h i j k l m

n o p q r s t u v w x y z

flyweight pool



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 9

Flyweight
● Introducing example (2)

Class structure

Glyph

draw(Context)
intersects(Point, Context)

Character
char c

draw(Context)
intersects(Point, Context)

Column

draw(Context)
intersects(Point, Context)

draw(Context)
intersects(Point, Context)

children children
Row



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 10

Flyweight
● Introducing example (2)

– For every character exists a reference to a glyph 
object shared by every instance of the same 
character in the document

– The position of each character (in the document 
and/or the page) needs to be stored externally



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 11

+getFlyweight(key)

Flyweight
● Structure

• declares an interface 
through which flyweights 
can receive and act on 
extrinsic state

• implements the Flyweight interface
• adds storage for intrinsic state
• must be sharable

• maintains a reference to Flyweights 
• computes or stores the extrinsic state 

of Flyweights

Flyweight

execute()

ConcreteFlyweight
intrinsicState

operation(extrinsicState)

• creates and manages 
Flyweight objects

• ensures that Flyweights are 
shared properly.

• If a Client requests a 
Flyweight, it gets an existing 
instance or a new created one, 
if it does not exist yet

Client FlyweightFactory

if (flyweight[key] does not exist {
create new flyweight;
add it to the pool of flyweights;

}
return flyweight;

UnsharedConcreteFlyweight
allState

operation(extrinsicState)

• represents a Flyweight subclass 
that is not shared

flyweights



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 12

flyweights

Flyweight
● Structure

... how flyweights are shared
aClient1

aConcreteFlyweight1
intrinsicState

aFlyweightFactory

aConcreteFlyweight2
intrinsicState

flyweight
pool

aClient2



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 13

Flyweight
● Collaboration

– To make a Flyweight work the basic states have to 
be characterized 

● either as intrinsic state
– stored in the ConcreteFlyweight object

● or as extrinsic state
– stored or computed by Client objects
– Clients pass this state to the flyweight when they invoke its 

operations
– Clients should not instantiate ConcreteFlyweight 

objects directly – they should use the 
FlyweightFactory to ensure they are shared 
properly



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 14

Flyweight
● Applicability

Use the Flyweight Pattern if all of following 
statements are true
– A large number of objects is involved
– Storage costs for these objects are high
– Most object state information could be made 

extrinsic
– Many groups of objects may be replaced by few 

shared objects
– Object identity is not important



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 15

Flyweight
● Consequences

+ Flyweight enable space savings – enhanced by
• more Flyweights being shared
• possible reduction in the total number of instances
• increasing the amount of intrinsic state per object
• computing rather storing the extrinsic state?

+ The more shared Flyweights, the more savings
– Flyweights may introduce run-time costs associated 

with
• transferring, finding, and / or computing extrinsic 

state



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 16

Flyweight
● Implementation

– Removing extrinsic state
● Ideally extrinsic state can be computed, so we have far 

smaller storage requirements
– Managing shared objects

● Clients should not instantiate them directly, because 
objects are shared

● Creation of flyweights on demand
● Suggestion: Storage of a mapping in a (hash) table



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 17

Flyweight
● Implementation – Check list [Hus08]

1. Ensure: Object overhead is an issue and the client 
of the class could take realignment responsibility

2. Divide the target class's state into: shareable 
(intrinsic) state, and non-shareable (extrinsic) state.

3. Remove the non-shareable state from the class
4. Create a Factory that manages class instances
5. Client uses the Factory to request objects.
6. The client must look-up or compute the extrinsic 

state, and supply that state to class methods. 



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 18

Flyweight
● Known Uses (see [GHJ+95])

– InterViews 3.0: The concept of flyweight objects 
was first described

– ET++ system: support look-and-feel independence
– XHTML uses a a common attributes parameter 

entity that is a Flyweight
– The XML & SGML Cookbook page 1-126 mentions 

the Flyweight pattern



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 19

Flyweight
● Related Patterns [Hus08] [p. 200, 206 GHJ+95]

– Flyweight is often combined with Composite to 
represent a hierarchical structure as a graph with 
shared leaf notes

● Using a flyweight disables the possibility to store a 
pointer to the parents



20/02/08 Uwe Gühl, Software Engineering DP-11 v1.0 20

Flyweight
● Related Patterns [Hus08] [p. 138, 206, 255 GHJ

+95]
– State and Strategy pattern could be implemented 

as flyweights
– Terminal symbols within Interpreter's abstract 

syntax tree can be shared with Flyweight
– Whereas Flyweight shows how to make lots of little 

objects, Facade shows how to make a single object 
represent an entire subsystem


