
219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 1 Software Development Processes

 1.1 List three reasons why to use a Software Development Process. [/ 3 A]

• Expectation: Good processes result in good products
• Better planning and controlling
• To achieve easy maintenance and extensibility of the resulting software product
• To know the status of development
• To obtain better collaboration
• To get a software product which fulfills the requirements
• To get a software product in the most effective and efficient way

 1.2 List three main activities in Software Development Processes. [/ 3 B]

• Analysis
• Design
• Implementation
• Test
• Project Management
• Documentation
• Maintenance
• Learning experience

 1.3 Object Oriented Software Development [/ 15]

a. What is the goal of Object Oriented Analysis? [/ 2 A]

The goal of Object Oriented Analysis is an easy understandable model with objects
and relationships

b. What is the goal of Object Oriented Design? [/ 2 B]

Design means to develop a solution for a given problem in consideration of given
surrounding conditions. The goal of Object Oriented Design is to develop an object
model of a system to implement the identified requirements

c. What are the main differences between an Object Oriented Analysis Model and an
Object Oriented Design Model? [/ 2]

The Object Oriented Analysis model is the visualization of the requirement
specification. The Object Oriented Design model is a blueprint of the system.

Software Engineering, Fall 2007/2008 Page 1 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

d. Following Object Oriented Analysis Model is given. Explain one possible reason or
consideration, why the Object Oriented Design Model should look different. [/ 1]

Multiple inheritance should be resolved.
Compare with the design principle: Favour composition over inheritance.

e. Create an Object Oriented Analysis Model based on following description [/ 5]

Software Engineering, Fall 2007/2008 Page 2 of 20
Uwe Gühl 27/02/08

A weather monitoring station contains a temperature sensor, an humidity sensor,
and a pressure sensor. Additional sensors could be added in future.
The weather monitoring station processes the observed data from the sensors
and displays the results on a display device.

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

f. What is a component in Object Oriented Design? [/ 2]

A component is part of a system or may serve as a part of a system. It is a
reusable, logically cohesive, loosely coupled module that denotes a single
abstraction.

g. List and explain three Object Oriented Design Principles [/ 3]

Extract of Class structure and relationships group
● Single Responsibility Principle (SRP)

One class should have only one responsibility or cover only one functional unit
● Open/Closed Principle (OCP)

Classes should be open to extension but closed to modification
● Liskov Substitution Principle (LSP)

Subclasses should be able to substitute for their base classes
● Don't Repeat Yourself (DRY)

Code should be written only once, duplication should be avoided
● Keep it simple, stupid (KISS)

No including of needless abstraction levels / generalizations etc.

Software Engineering, Fall 2007/2008 Page 3 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

 1.4 Agile Software Development [/ 6]

a. Describe 3 practices of Extreme Programming. [/ 3 A]

● Pair programming
2 developers work together

● Testing – Test Driven Development
Writing tests first before coding

● The Planning Game
Release planning based on user
stories, prioritized by customer –
effort guessed by developers

● On-Site Customer
Customer collaborates on the spot

● Continuous Integration
If a user story is done, it gets
integrated in the whole system

● Refactoring
Continuous design improvement

● Small Releases
to get early customer feedback

● Coding Standards
● Collective Code Ownership
● Simple Design

Not needed code gets deleted
immediately, implement only what is
needed to fulfill an user story

● Metaphor
Simple system story instead of a
complex architecture description

● Sustainable Pace
No overtime should not be done

b. What are the responsibilities and tasks of the participating roles during an iteration
phase (“timebox”) in agile software development processes? [/ 3 B]

• Developers develop code and consult with customers as needed
• Customers define new requirements as desired
• Project manager plans, controls, and helps in process and meeting

milestones

c. List the main differences between the Rational Unified Process and
Agile Software Development Processes (Extreme Programming) [/ 3]

RUP Agile software development
● Heavy process
● Document / Artifact concentrated
● Organization important
● Based on UML

● Roles
● Phases with Artifacts
● Specification

● Lean process
● User Stories / On-site Customer
● Organization minimized
● Based on User Stories / On-site

Customer
● Collective Code Ownership
● Timeboxes
● User stories / storycards

Software Engineering, Fall 2007/2008 Page 4 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 2 Requirements Analysis

 2.1 Functional or non functional (required constraints) requirements? [/ 3]

Requirement Functional Non
functional

Mamegoma Mark 2 robot should clean sofa, bed, and bin X
The new cipher machine model should encrypt 1500
messages per hour X
The Protoss Zealot is only able to attack unit on the ground X
The command “get ready” should be given to 1,000
soldiers in 5 minutes X
The command “next” will change the state of the
canvas object to the next color. X
We need to create a house in many styles with the steps
 - Create building framework
 - Create floor
 - Create wall
 - Create roof

X

 2.2 Use Case diagram [/ 3]

A
Create a Use Case diagram based on following description:

● A customer uses an elevator to move up or down
● If the customer is moving up or down, she optional could activate an alarm
● If the alarm is activated, the elevator sounds an alarm signal

Software Engineering, Fall 2007/2008 Page 5 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

B
Create a Use Case diagram based on following description:

● A customer uses an escalator to move up
● If the customer is moving up, the hand rail always gets activated
● If the customer touches the handrail, the handrail gets illuminated

Software Engineering, Fall 2007/2008 Page 6 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 3 UML diagrams

 3.1 What does the abbreviation UML mean? [/ 1]

Unified Modelling Language

 3.2 Class diagrams [/ 3]
Please create class diagrams for following descriptions:

The abstract class F has a
private attribute size and a
public method getsize()

The classes A and B inherit from the
abstract class R. A contains R as
aggregate, so A has any R.

C is related to any
number of D

 3.3 Sequence diagram [/ 4]
Please create a sequence diagram representing the following facts:

Software Engineering, Fall 2007/2008 Page 7 of 20
Uwe Gühl 27/02/08

A customer goodCustomer sends to the company niceCompany an order
containing the attribute text. The company niceCompany sends back a detailing
request to the customer goodCustomer. The customer goodCustomer resends
to the company niceCompany an order containing the attribute detailedText.

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 4 Design Pattern – General

 4.1 Characteristics of Design Pattern [/ 1]
Which of the following statements describe the characteristics of Design Pattern (more
than one answer could be selected)?

1. Design Pattern offer a vocabulary for talking about design.

2. Design Pattern identify key aspects of a common design structure.

3. A Design Pattern is an implementation specific finished design

4. Design Pattern avoid reuse of design and code

 4.2 Structures of Design Pattern [/ 7]

a. Which diagram shows the Proxy Pattern? [/ 1]

b. Which special kind of which Design Pattern is described here? [/ 1]

Object Adapter

Software Engineering, Fall 2007/2008 Page 8 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

c. Which Design Pattern is used here? [/ 1]

State Pattern

d. Design a UML diagram showing the structure of the Observer Pattern [/ 4 A]

e. Design a UML diagram showing the structure of the Template Method [/ 4 B]

Software Engineering, Fall 2007/2008 Page 9 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

 4.3 Categories of Design Pattern [/ 4]

a. List 4 Structural Design Pattern [/ 2 A]
b. List 4 Behavorial Design Pattern [/ 2 B]

Structural Behavorial
Adapter Chain of Responsibility Observer
Bridge Command State
Composite Interpreter Strategy
Decorator Iterator Template Method
Façade Mediator Visitor
Flyweight Memento
Proxy

c. Describe the intent of 1 Behavorial Design Pattern [/ 2 A]
d. Describe the intent of 1 Structural Design Pattern [/ 2 B]

see for example
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

Software Engineering, Fall 2007/2008 Page 10 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 5 Façade Design Pattern

Following UML class diagram is given:

 5.1 Design discussion [/ 2]

a. Why should you use the Façade Design Pattern here? [/ 1]

Many dependencies between clients and application classes.
If classes like Engine, Tyre, or Body get updated, client code has to be changed.
Portability is not easy possible.

b. If you use the Façade Design Pattern, what will be improved? [/ 1]

A simple interface makes communication to subsystem classes for the different
calculation programs easier, as less objects and classes must be known
The calculation programs communicate with the subsystem by sending requests to
the Façade, they don't access the subsystem / component objects directly any
more. This reduces complex dependencies. Loose coupling allows independent
development of the subsystem. Components of the subsystem could be changed
without consequences on the client side.
Additionally lower compiling dependencies increase the portability.

Software Engineering, Fall 2007/2008 Page 11 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

 5.2 Create a new UML class diagram using the Façade Design Pattern [/ 4]

 5.3 Related Pattern [/ 2]
What is the difference between the Adapter pattern and the Façade pattern?

The adapter is changing an interface to one that a client can deal with. Without an adapter
an access to the adapted class / classes would not be possible.
The façade encapsulates and offers a simplified access to a subsystem. A façade is not
really necessary.

Software Engineering, Fall 2007/2008 Page 12 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 6 Singleton Design Pattern

 6.1 Describe the intent of the Singleton Design Pattern [/ 1]

A Singleton is the combination of two essential properties:
● Ensure a class only has one instance
● Provide a global point of access to it

 6.2 Structure of the Singleton Pattern [/ 2]
Design and describe the structure of the Singleton Pattern in a UML class diagram

 6.3 Which Design Pattern could be used with the Singleton Pattern? [/ 2]

Abstract factory – A concrete factory is often a Singleton. As it offers the possibility to
create other objects it makes sense to have only one, e. g. to save memory.
Builder – To ensure that everyone is using the Builder properly.
Prototype – can use Singleton in its implementation
Adapter – If a shared resource is wrapped by an Adapter, an Adapter Singleton can
ensure that this resource is used in the right way.
Façade – Façade objects are often Singletons because only one Façade object is required
State – State objects are often Singletons

 6.4 Give an example, when the use of the Singleton Pattern is applicable [/ 1]

Wherever a device should be shared
● Print spooler
● File system
● Window manager
● Serial port
● Database connection

Software Engineering, Fall 2007/2008 Page 13 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

 6.5 Singleton implementation [/ 2 A]

Attached you see a proposal for an implementation

In another part of the code you see following line:

mySingleton = new Singleton();

a. What is your comment to this line? [/ 1]

Cannot compile, as the constructor Singleton() is private - not visible

b. How would you update this line? [/ 1]

Singleton mySingleton = Singleton.getInstance();

Software Engineering, Fall 2007/2008 Page 14 of 20
Uwe Gühl 27/02/08

public class Singleton {
 private final static Singleton instance = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {
 return instance;
 }
}

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

 6.6 Singleton implementation [/ 2 B]

Attached you see a proposal for an implementation:

a. What is your comment to this code? [/ 1]

As the constructor is public, many instances could be created. So the code does
not guarantee, that only one instance is available.

b. What would you change in the code? [/ 1]

private Singleton() {}

Software Engineering, Fall 2007/2008 Page 15 of 20
Uwe Gühl 27/02/08

public class Singleton {
 private final static Singleton instance = new Singleton();

 public Singleton() {}

 public static Singleton getInstance() {
 return instance;
 }
}

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

Task 7 Abstract Factory Design Pattern

 7.1 Describe the intent of the Abstract Factory Pattern [/ 2]

Provide an interface for creating families of related or dependent objects without specifying
their concrete classes

 7.2 Implementation example [/ 20]
Following code sample is given:

public abstract class CarFactory {
 public static CarFactory getFactory(String model) {
 if (model == "BMVV") {
 return new BMVVFactory();
 } else if (model == "Morecedes") {
 return new MorecedesFactory();
 }

 else if (model == "OOOOFactory") {
 return new OOOOFactory();
 }

 else
 return null;
 }

 public abstract LuxuryClassCar createLuxuryClassCar();

}

public class MorecedesFactory extends CarFactory {
 public LuxuryClassCar createLuxuryClassCar() {
 return new SpecialClass();
 }
 public SmallClassCar createSmallClassCar() {
 return new AAClass();
 }
}

public class BMVVFactory extends CarFactory {
 public LuxuryClassCar createLuxuryClassCar() {
 return new SevenSeries();
 }
 public SmallClassCar createSmallClassCar() {
 return new OneSeries();
 }
}

Software Engineering, Fall 2007/2008 Page 16 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

public abstract class Car {
 public abstract void produce();
}

public abstract class LuxuryClassCar extends Car {
}

public class SevenSeries extends LuxuryClassCar {
 public void produce() {
 System.out.println("Producing a nice BMVV Seven Series Luxury Car!");
 }
}

public class SpecialClass extends LuxuryClassCar {
 public void produce() {
 System.out.println("Producing a nice Morecedes Special Class Luxury Car!");
 }
}

public class Client {
 public static void main(String[] args) {
 CarFactory factory = CarFactory.getFactory("BMVV");
 Car car = factory.createLuxuryClassCar();
 car.produce();
 }
}

a. Explain, which method in the code is a Factory Method. [/ 3]

For example the method
public abstract LuxuryClassCar createLuxuryClassCar();

is a Factory Method of the Creator abstract class CarFactory.
The ConcreteCreator class BMVVFactory
overrides the Factory Method and returns an instance of the ConcreteProduct
SevenSeries(),
and the ConcreteCreator class MorecedesFactory
returns an instance of the ConcreteProduct SpecialClass().

b. What will be the result of this code, if you compile it? [/ 2]

"Producing a nice BMVV Seven Series Luxury Car!"

c. What do you have to change in the code if you would like to get the output
"Producing a nice Morecedes Special Class Luxury Car!"? [/ 2]

Update in public class Client
the line CarFactory factory = CarFactory.getFactory("BMVV");
to CarFactory factory = CarFactory.getFactory("Morecedes");

Software Engineering, Fall 2007/2008 Page 17 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

d. Design for the given code sample the corresponding UML class diagram [/ 4]

e. Which class is taking which role of the Abstract Factory Design Pattern? [/ 3]

Abstract Factory Pattern Code sample
Abstract Factory CarFactory
ConcreteFactory1 MorecedesFactory
ConcreteFactory2 BMVVFactory
AbstractProductA LuxuryClassCar
ProductA1 SpecialClass
ProductA2 SevenSeries

Software Engineering, Fall 2007/2008 Page 18 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

f. Add another CarFactory ”OOOOFactory”, which could produce a luxury class car
named ”OOOOEight”.
Write the corresponding code to be added into the code sample on pages 13
and 14, add the necessary code for new classes here: [/ 6 A]

public class OOOOFactory extends CarFactory {
 public LuxuryClassCar createLuxuryClassCar() {
 return new OOOOEight();
 }
}

public class OOOOEight extends LuxuryClassCar {
 public void produce() {

 System.out.println("Producing a nice OOOO Eight Luxury Car!");
 }

}

g. Add additional car classes:
• For the ”BMVVFactory” the small class car ”OneSeries”
• For the ”MorecedesFactory” the small class car ”AAClass”

Write the corresponding code to be added into the code sample on pages 13
and 14, add the necessary code for new classes here: [/ 6 B]

public abstract class SmallClassCar extends Car {
}

public class OneSeries extends SmallClassCar {
 public void produce() {
 System.out.println("Producing a nice BMVV One Series Small Car!");
 }
}

public class AAClass extends SmallClassCar {
 public void produce() {
 System.out.println("Producing a nice Morecedes AA Class Small Car!");
 }
}

Software Engineering, Fall 2007/2008 Page 19 of 20
Uwe Gühl 27/02/08

219498 - Final Examination Version 1.0 Master
Name: Registration-Nb.:

 7.3 Consequences of the Abstract Factory Design Pattern [/ 2]
Describe the consequences of the Abstract Factory Design Pattern.
What are the benefits and what are the disadvantages?

+ Concrete classes are isolated
The names of the product classes do not appear in client code

+ Exchanging of product families easy
The name of the concrete factory appears only once in the application – where it is
instantiated

+ Consistency of products gets supported
The creation of products with the factory avoids, that a client creates products from
different families at the same time by accident

– Support of new products is complex
The interface of the abstract factory has to be adapted.
The abstract factory fixes the set of products which could be generated

Software Engineering, Fall 2007/2008 Page 20 of 20
Uwe Gühl 27/02/08

	Task 1 Software Development Processes
	 1.1 List three reasons why to use a Software Development Process.	[/ 3 A]
	 1.2 List three main activities in Software Development Processes.	[/ 3 B]
	 1.3 Object Oriented Software Development	[/ 15]
	 1.4 Agile Software Development	[/ 6]

	Task 2 Requirements Analysis
	 2.1 Functional or non functional (required constraints) requirements?	[/ 3]
	 2.2 Use Case diagram	[/ 3]

	Task 3 UML diagrams
	 3.1 What does the abbreviation UML mean?	[/ 1]
	 3.2 Class diagrams	[/ 3]
	 3.3 Sequence diagram 	[/ 4]

	Task 4 Design Pattern – General
	 4.1 Characteristics of Design Pattern	[/ 1]
	 4.2 Structures of Design Pattern	[/ 7]
	 4.3 Categories of Design Pattern 	[/ 4]

	Task 5 Façade Design Pattern
	 5.1 Design discussion	[/ 2]
	 5.2 Create a new UML class diagram using the Façade Design Pattern	[/ 4]
	 5.3 Related Pattern 	 [/ 2]

	Task 6 Singleton Design Pattern
	 6.1 Describe the intent of the Singleton Design Pattern	[/ 1]
	 6.2 Structure of the Singleton Pattern	[/ 2]
	 6.3 Which Design Pattern could be used with the Singleton Pattern?	[/ 2]
	 6.4 Give an example, when the use of the Singleton Pattern is applicable	[/ 1]
	 6.5 Singleton implementation	[/ 2 A]
	 6.6 Singleton implementation	[/ 2 B]

	Task 7 Abstract Factory Design Pattern
	 7.1 Describe the intent of the Abstract Factory Pattern	[/ 2]
	 7.2 Implementation example	[/ 20]
	 7.3 Consequences of the Abstract Factory Design Pattern	[/ 2]

