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Test Development Process
● The level of formality of the test development 

process depends on the context of the testing, 
including 
– maturity of testing and development 

processes, 
– time constraints, 
– safety or regulatory requirements, 
– people involved.
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Test Development Process

Test analysis
● Analysis of test basis documentation,
● determine what to test,
● identify test conditions.
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Test Development Process
● Definition: A test condition is an item or event that 

could be verified by one or more test cases; e. g.
– function, 
– transaction, 
– quality characteristic,
– structural element.

● Requested: Bidirectional traceability between
Test conditions  Specifications and requirements 
– for impact analysis when requirements change, 
– to determine requirements coverage for a set of 

tests.
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Test Development Process

Test design: Creation and specification of 
test cases and test data
● A test case consists of a set of 

– input values, 
– execution preconditions, 
– expected results, and 
– execution postconditions, 
to cover a certain test objective(s) or test condition(s). 

● The ‘Standard for Software Test Documentation’ (IEEE 
STD 829-1998) describes the content of 
test design specifications (containing test conditions) and 
test case specifications.
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Test Development Process

Expected results 
● Description of expected results should include

– outputs,
– changes to data and states, 
– any other consequences of the test. 

● If expected results are not defined, 
then a plausible, but erroneous, result 
may be interpreted as the correct one.

● Expected results should ideally be defined 
before tests get executed.
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Test Development Process

Test implementation 
Activities (IEEE STD 829-1998): 
● Test Cases are

– developed, 
– implemented, 
– prioritized and 
– organized in the test procedure specification.

●  Test Execution Schedules are
– defined,
– executed.
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Test Development Process
● Test execution schedule

– contents and defines the execution order of
● test procedures

… specifies the sequence of actions for a test execution
● automated test procedures (automated test scripts)

… if a test automation tool is used, contents sequence of 
actions

– takes into account factors like
● regression tests, 
● prioritization, 
● technical dependencies,
● logical dependencies.
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Test Design Techniques
● Purpose of a test design technique is to identify

– test conditions, 
– test cases, and 
– test data.
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Test Design Techniques
● Black-box test design techniques (also called 

specification-based techniques) 
– are based on an analysis of the test basis 

documentation,
– include both functional and non-functional testing. 

● Black-box testing, by definition, does 
not use any information regarding 
the internal structure 
of the component or system 
to be tested
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Test Design Techniques
● White-box test design techniques (also called 

structural or structure-based techniques) are 
based on an analysis of the structure of the 
component or system.

● White-box testing does use any information 
regarding the internal structure of the 
component or system to be tested
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Test Design Techniques
● Greybox test design techniques

– Test Strategy based partly on internals of a software, 
involves knowledge of internal data structures and 
algorithms for purposes of designing tests, 

– execute defined tests at the user, or black-box level.
– Idea: If you know something about the inside, you 

can test it better from outside
– Important with web applications 

http://en.wikipedia.org/wiki/Software_testing
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Test Design Techniques
● Black-box and white-box testing may also be 

combined with experience-based techniques to 
leverage the experience of developers, testers 
and users to determine what should be tested.
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Test Design Techniques

Specification-based test design techniques
● Models, either formal or informal, are used for

– the specification of the problem to be solved,
– the software, or 
– the software components.

● Test cases can be derived systematically from 
these models
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Test Design Techniques

Structure-based test design techniques
● Information about how the software is 

constructed is used to derive the test cases 
(e.g., code and detailed design information).

● The extent of coverage of the software can be 
measured for existing test cases, and further 
test cases can be derived systematically to 
increase coverage.
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Test Design Techniques

Experience-based test design techniques
● The knowledge and experience of people are 

used to derive the test cases
● The knowledge of testers, developers, users 

and other stakeholders about the software, its 
usage and its environment is one source of 
information

● Knowledge about likely defects and their 
distribution is another source of information
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Black-box Techniques
● Equivalence Partitioning
● Boundary Value Analysis
● Decision Table Testing
● State Transition Testing
● Use Case Testing
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Black-box Techniques
Equivalence Partitioning (1/4)

● Inputs to the software or system are divided into 
groups that are expected to exhibit similar behaviour.

● Equivalence partitions (or classes) can be found for
– valid data, i.e., values that should be accepted,
– invalid data, i.e., values that should be rejected. 

● Partitions can also be identified for 
– outputs, 
– internal values, 
– time-related values (e.g., before or after an event),
– interface parameters (e.g., integrated components 

being tested during integration testing).



21/01/12 Uwe Gühl - IT Quality and Software Test 05 20

Black-box Techniques
Equivalence Partitioning (2/4)

● Equivalence partitioning 
– is applicable at all levels of testing.
– can be used to achieve input and output coverage 

goals. 
– can be applied to 

● human input, 
● input via interfaces to a system, or 
● interface parameters in integration testing.
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Black-box Techniques
Equivalence Partitioning (3/4)

● Example: Input: Day of the week
Ideas 

– Working day
– Weekend day

● Input: Day of the week as number 
(1 = Monday, …, 7 = Friday)
Ideas:

– Valid: ≥ 1 and  ≤ 7
– Not valid: <1 or >7
– Test: 0, 5, 14
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Black-box Techniques
Equivalence Partitioning (4/4)

● Example: Input: Month; ideas:
– Months with 30 days
– Months with 31 days
– February with 28 days (non leap year)
– February with 29 days (leap year)

● Month as number 
(1 = January, …, 12 = December); ideas:

– Valid: ≥ 1 and  ≤ 12
– Not valid: <1 or > 12
– Test: 0, 5, 14

Legend:
Red values: Not valid values
Green values: Valid values
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Black-box Techniques
Boundary Value Analysis (1/3)

● Behaviour at the edge of each equivalence 
partition is more likely to be incorrect than 
behaviour within the partition 
 Defect detection probable

● The maximum and minimum values of a 
partition are its boundary values. 

● Boundary of a valid partition is 
a valid boundary value.

● Boundary of an invalid partition is 
an invalid boundary value.

Design 
corresponding 
tests for each 
boundary 
value
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Black-box Techniques
Boundary Value Analysis (2/3)

● Boundary value analysis 
– can be applied at all test levels. 
– is relatively easy to apply and its defect finding 

capability is high.
– Is often considered as an extension of 

equivalence partitioning or other black-box 
test design techniques. 

● Detailed specifications are helpful in 
determining the interesting boundaries.
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Black-box Techniques
Boundary Value Analysis (3/3)

● Examples for usage:
– Equivalence classes for user input on screen
– time ranges (e.g., time out, transactional speed 

requirements)
– table ranges (e.g., table size is 512*512).

● Example: Month as number (1 = January, …, 
12 = December); ideas:

– Valid: ≥ 1 and  ≤ 12
– Not valid: <1 or > 12
– Boundaries Test: 0, 1, 12, 13

Legend:
Red values: Not valid values
Green values: Valid values
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Black-box Techniques
Decision Table Testing (1/7)

● Decision tables 
– to capture system requirements that contain 

logical conditions, 
– to document internal system design. 
– to record complex business rules that should be 

implemented. 
● When creating decision tables, the specification 

is analysed, and conditions and actions of the 
system are identified.
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Black-box Techniques
Decision Table Testing (2/7)

● The input conditions and actions are most often 
boolean (TRUE - FALSE). 

● The decision table contains the triggering 
conditions, often combinations of true and false 
for all input conditions, and the resulting actions 
for each combination of conditions. 

● Each column of the table corresponds to a 
business rule that defines a unique combination 
of conditions and which result in the execution 
of the actions associated with that rule.
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Black-box Techniques
Decision Table Testing (3/7)

● The coverage standard commonly used with 
decision table testing is to have at least one test 
per column in the table, which typically involves 
covering all combinations of triggering 
conditions.
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Black-box Techniques
Decision Table Testing (4/7)

● Advantage of decision table testing 
– It creates combinations of conditions that 

otherwise might not have been exercised 
during testing. 

● When to use?
When the action of the software depends on 
several logical decisions.
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Black-box Techniques
Decision Table Testing (5/7)

● Example [Dus07]: 8 Test Cases in the 
beginning
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Black-box Techniques
Decision Table Testing (6/7)

● Example [Dus07] Same impact
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Black-box Techniques
Decision Table Testing (7/7)

● Example [Dus]: Reducing to 5 Test Cases
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Black-box Techniques
State Transition Testing (1/6)

● A system may exhibit a different response 
depending on current conditions or previous 
history (its state).
 can be shown with a state transition diagram.

● It allows to view the software in terms of 
– its states, 
– transitions between states, 
– the inputs or events that trigger state changes 

(transitions),
– the actions which may result from those transitions.



21/01/12 Uwe Gühl - IT Quality and Software Test 05 34

Black-box Techniques
State Transition Testing (2/6)

● The states of the system or object under test 
are separate, identifiable and finite in number.

● A state table shows the relationship between 
the states and inputs, and can highlight 
possible transitions that are invalid.
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Black-box Techniques
State Transition Testing (3/6)

● Tests can be designed to 
– cover a typical sequence of states, 
– cover every state, 
– exercise every transition, 
– exercise specific sequences of transitions 
– test invalid transitions.

● Usage of State transition testing 
– embedded software,
– technical automation,
– modelling a business object with specific states (in business 

scenarios)
– testing screen-dialogue flows (Web applications)
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Black-box Techniques
State Transition Testing (4/6)

● Example 1: Fan

switched off

sm Room ventilator

Level 1

do / slow turn

Level 2

do / fast turn

Level 2 chosen /
switch 2

Level 1 chosen /
switch 1
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Black-box Techniques
State Transition Testing (5/6)

● Example 2: Vendor machine [Dus07]
● Status: „empty“, „filled“ (less then full), „full”
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Black-box Techniques
State Transition Testing (6/6)

● Example 2: Transition Tree [Dus07]
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Black-box Techniques
Use Case Testing (1/18)

● Tests can be derived from use cases. 
● A use case describes interactions between 

actors (users or systems), which produce a 
result of value to a system user or the 
customer. 

● Use cases may be described at the 
– abstract level (business use case, technology-

free, business process level),
– the system level (system use case on the 

system functionality level).
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Black-box Techniques
Use Case Testing (2/18)

● Use Case has
– a main scenario,
– alternative scenarios,
– failure scenarios.
– preconditions which need to be met for the use 

case to work successfully. 
– postconditions which are the observable results 

and final state of the system after the use 
case has been completed.
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Black-box Techniques
Use Case Testing (3/18)

1. Enter customer data.
If customer is yet not registered  UC 12 Register 
customer.

2. Enter desired car category
3. Enter desired leasing period
4. If a car is available in the desired period:

1. Reserve a car
2. Enter credit card information
3. Print contract and sign
Otherwise:
Adapt item 2. or 3., if possible

Activities

The rental system is ready to get customer data and to realize a 
lease contractPost condition

Leasing is done, and the customer has signed the contractResult

The rental system is ready to get customer data and to realize a 
lease contractPre condition

Customer asks agentTrigger

Customer, agentActors

A customer comes to the car rental agency and chooses a car 
which he rents for a fixed periodShort description

214 / Rent a carId / Name

Example of a 
use case description
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Black-box Techniques
Use Case Testing (4/18)

● Use cases 
– describe the “process flows” through a system 

based on its actual likely use, 
– are very useful for designing acceptance tests 

with customer/user participation.
● Test cases derived from use cases detect

– defects in the process flows during real-world 
use of the system.

– integration defects caused by the interaction 
and interference of different components
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Black-box Techniques
Use Case Testing (5/18)

● Test Case
– Sequence of steps consisting of actions to be 

performed on the system under test [Bla04]
– is the “basic unit” in Testing
– serves to validate the functionality and to 

confirm the realization of a requirement
● functional
● non functional (quality criteria)

– originates typically out of an Use Case
– Usually NFR-Test Cases are taken from 

regular Test Cases, if so simplification
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Black-box Techniques
Use Case Testing (6/18)

● Test Case
– describes the role who should execute it
– contents Test Steps with

● Activities of the tester
● Input values
● Expected output values

– describes preconditions and postconditions
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Black-box Techniques
Use Case Testing (7/18)

● Test Case – Example
– Test Case name „IU22_Create-Object“
– Test Case ID 7
– Priority 1
– Test classification Standard
– Preparation Hours 1
– Execution Hours 1
– Description Creation of an Object. The user must select an object

He has to decide which specific kind ...
– Risk Without Creation of objects Software can't be used
– Version 01
– is Test Case Chain  [  ] 
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Black-box Techniques
Use Case Testing (8/18)

● Test Case – Example (cont.) Condition
– Goal Creation of a new object
– Prerequisites Following objects must be available in database 

to execute this test case:
* object A
* object B

– Remarks Function „select module“ is described in Test Case
„IU21_Display-Object“
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Black-box Techniques
Use Case Testing (9/18)

● Test Case – Example (cont.) Test Steps
– StepNo. Description Comments Expected Result
– 10 Select an Selected Item will be

object in the highlighted
tree structure

– 20 Choose „create“ Dialog box opens
– 30 Choose radio

button 
– 40 Enter Obj ID
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Black-box Techniques
Use Case Testing (10/18)

● Following prioritization
Use Cases are typically prioritized 

– High priority: Must – no discussion
– Medium priority: Should – necessary 
– Low priority: Could – Nice to have

– should be considered in derived test cases
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Black-box Techniques
Use Case Testing (11/18)

● Effort calculation
The more complex and the more effort in creating Use 
Cases, the higher the test effort, e.g.
– Very complex Use Cases (> 1 week effort)

→ 12 Test Cases
– Medium complex Use Cases (> 1 day, ≤ 1 week effort)

→ 8 Test Cases
– Low complex Use Cases (≤ 1 day effort)

→ 4 Test Cases
– good basic to calculate effort in designing test cases
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Black-box Techniques
Use Case Testing (12/18)

● Reviews of Use Cases as basic

Requirements 
Engineer

Tester

Use 
Cases

Review
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Black-box Techniques
Use Case Testing (13/18)

● Reviews of Test Cases to achieve better quality

Requirements 
Engineer

Tester



Test 
Cases

Review
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Black-box Techniques
Use Case Testing (14/18)

● Designing test cases from use cases may be 
combined with other specification-based test 
techniques.
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Black-box Techniques
Use Case Testing (15/18)

● Test Scenario
– Synonym: Test Case Chain, Test Suite [Bla04]
– Collection of logically related test cases [Bla04]
– Test Scenarios are used to test processes – 

were process requirements implemented 
completely and correct?

– A Test Scenario is a combination of – possibly 
modified (as a rule simplified) – Test Cases

– A Test Scenario arises typically from a Business 
Scenario (Business Use Case)



21/01/12 Uwe Gühl - IT Quality and Software Test 05 54

Black-box Techniques
Use Case Testing (16/18)

● Test Scenario
– Test Scenarios typically test the data flow in the 

system
– Tests usually don't end with testing the system itself 

only
● Interface test 

(e.g. with MQSeries
from IBM)

● System simulator Suggestion: Study 
“Mocks Aren't Stubs” at 

http://www.martinfowler.com/artic
les/mocksArentStubs.html
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Black-box Techniques
Use Case Testing (17/18)

● Test Scenario Example “User logs in a 
vocabulary training system and does 1st lecture”

– Test case 17 „First login“
– Test case 33 „Choose Language“

● Source language „English“, Target language „Thai“
● Level „Starter“
● Lesson „Vacancy“
● Learning strategy 1 

– Test case 46 „First lesson“
– Test case 103 „Follow-up lesson“
– Test case 132 „Score“

● Choose Bar Chart
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Black-box Techniques
Use Case Testing (18/18)

● Test data
– All data needed for testing
– Discussion

● Based on Business Object Data Model or 
Physical Data Model

● Artificial data or based on real business data, 
e. g. out of legacy systems

● Which test data are included with delivery?
● Feed of Test data
● Remove of Test data („nacked system“)
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Comparison (1/2)
● White Box Testing

– Based on internal 
structure, code, 
database

– Typically done by 
developer, 
designer

– Test Levels: 
Component, 
Component Integration

● Black Box Testing
– Based on 

Requirements, 
Functionality

– Typically done by 
(professional) testers, 
users

– Test Levels: 
System, 
System Integration, 
Acceptance
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Comparison (2/2)
● White Box Testing

– Less organizational 
effort

– Automation easy
– Higher code quality

● Black Box Testing
– Good Testing of the 

complete software
– Review of 

specification
– Independent from 

implementation
– Test focus only on 

specification
Less quality of 
specification
 less quality of test 
results

Suggestion: Study 
http://tynerblain.com/
blog/2006/01/13/soft
ware-testing-series-
black-box-vs-white-

box-testing/
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Sources
● International Software Testing Qualifications Board: Certified 

Tester Foundation Level Syllabus, Released Version 2011, 
http://istqb.org/display/ISTQB/Foundation+Level+Documents

● [Dus07] , Dr. K. Dussa-Zieger: Testen von Software-Systemen 
FAU Erlangen-Nürnberg, SS 2007
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