
IT Quality and Software Test

Lesson 5
Test Design Techniques

Dynamic Testing I
V1.1

Uwe Gühl

Winter 2011/ 2012

21/01/12 Uwe Gühl - IT Quality and Software Test 05 2

Contents
● Test Design Techniques – Dynamic Testing I

– Test Development Process
– Categories of Test Design Techniques
– Black-box Techniques

(or Specification-based Techniques)
● Equivalence Partitioning
● Boundary Value Analysis
● Decision Table Testing
● State Transition Testing
● Use Case Testing

– Comparison Black-box / White-box Techniques

21/01/12 Uwe Gühl - IT Quality and Software Test 05 3

Test Development Process
● The level of formality of the test development

process depends on the context of the testing,
including
– maturity of testing and development

processes,
– time constraints,
– safety or regulatory requirements,
– people involved.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 4

Test Development Process

Test analysis
● Analysis of test basis documentation,
● determine what to test,
● identify test conditions.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 5

Test Development Process
● Definition: A test condition is an item or event that

could be verified by one or more test cases; e. g.
– function,
– transaction,
– quality characteristic,
– structural element.

● Requested: Bidirectional traceability between
Test conditions Specifications and requirements
– for impact analysis when requirements change,
– to determine requirements coverage for a set of

tests.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 6

Test Development Process

Test design: Creation and specification of
test cases and test data
● A test case consists of a set of

– input values,
– execution preconditions,
– expected results, and
– execution postconditions,
to cover a certain test objective(s) or test condition(s).

● The ‘Standard for Software Test Documentation’ (IEEE
STD 829-1998) describes the content of
test design specifications (containing test conditions) and
test case specifications.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 7

Test Development Process

Expected results
● Description of expected results should include

– outputs,
– changes to data and states,
– any other consequences of the test.

● If expected results are not defined,
then a plausible, but erroneous, result
may be interpreted as the correct one.

● Expected results should ideally be defined
before tests get executed.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 8

Test Development Process

Test implementation
Activities (IEEE STD 829-1998):
● Test Cases are

– developed,
– implemented,
– prioritized and
– organized in the test procedure specification.

● Test Execution Schedules are
– defined,
– executed.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 9

Test Development Process
● Test execution schedule

– contents and defines the execution order of
● test procedures

… specifies the sequence of actions for a test execution
● automated test procedures (automated test scripts)

… if a test automation tool is used, contents sequence of
actions

– takes into account factors like
● regression tests,
● prioritization,
● technical dependencies,
● logical dependencies.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 10

Test Design Techniques
● Purpose of a test design technique is to identify

– test conditions,
– test cases, and
– test data.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 11

Test Design Techniques
● Black-box test design techniques (also called

specification-based techniques)
– are based on an analysis of the test basis

documentation,
– include both functional and non-functional testing.

● Black-box testing, by definition, does
not use any information regarding
the internal structure
of the component or system
to be tested

21/01/12 Uwe Gühl - IT Quality and Software Test 05 12

Test Design Techniques
● White-box test design techniques (also called

structural or structure-based techniques) are
based on an analysis of the structure of the
component or system.

● White-box testing does use any information
regarding the internal structure of the
component or system to be tested

21/01/12 Uwe Gühl - IT Quality and Software Test 05 13

Test Design Techniques
● Greybox test design techniques

– Test Strategy based partly on internals of a software,
involves knowledge of internal data structures and
algorithms for purposes of designing tests,

– execute defined tests at the user, or black-box level.
– Idea: If you know something about the inside, you

can test it better from outside
– Important with web applications

http://en.wikipedia.org/wiki/Software_testing

21/01/12 Uwe Gühl - IT Quality and Software Test 05 14

Test Design Techniques
● Black-box and white-box testing may also be

combined with experience-based techniques to
leverage the experience of developers, testers
and users to determine what should be tested.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 15

Test Design Techniques

Specification-based test design techniques
● Models, either formal or informal, are used for

– the specification of the problem to be solved,
– the software, or
– the software components.

● Test cases can be derived systematically from
these models

21/01/12 Uwe Gühl - IT Quality and Software Test 05 16

Test Design Techniques

Structure-based test design techniques
● Information about how the software is

constructed is used to derive the test cases
(e.g., code and detailed design information).

● The extent of coverage of the software can be
measured for existing test cases, and further
test cases can be derived systematically to
increase coverage.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 17

Test Design Techniques

Experience-based test design techniques
● The knowledge and experience of people are

used to derive the test cases
● The knowledge of testers, developers, users

and other stakeholders about the software, its
usage and its environment is one source of
information

● Knowledge about likely defects and their
distribution is another source of information

21/01/12 Uwe Gühl - IT Quality and Software Test 05 18

Black-box Techniques
● Equivalence Partitioning
● Boundary Value Analysis
● Decision Table Testing
● State Transition Testing
● Use Case Testing

21/01/12 Uwe Gühl - IT Quality and Software Test 05 19

Black-box Techniques
Equivalence Partitioning (1/4)

● Inputs to the software or system are divided into
groups that are expected to exhibit similar behaviour.

● Equivalence partitions (or classes) can be found for
– valid data, i.e., values that should be accepted,
– invalid data, i.e., values that should be rejected.

● Partitions can also be identified for
– outputs,
– internal values,
– time-related values (e.g., before or after an event),
– interface parameters (e.g., integrated components

being tested during integration testing).

21/01/12 Uwe Gühl - IT Quality and Software Test 05 20

Black-box Techniques
Equivalence Partitioning (2/4)

● Equivalence partitioning
– is applicable at all levels of testing.
– can be used to achieve input and output coverage

goals.
– can be applied to

● human input,
● input via interfaces to a system, or
● interface parameters in integration testing.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 21

Black-box Techniques
Equivalence Partitioning (3/4)

● Example: Input: Day of the week
Ideas

– Working day
– Weekend day

● Input: Day of the week as number
(1 = Monday, …, 7 = Friday)
Ideas:

– Valid: ≥ 1 and ≤ 7
– Not valid: <1 or >7
– Test: 0, 5, 14

21/01/12 Uwe Gühl - IT Quality and Software Test 05 22

Black-box Techniques
Equivalence Partitioning (4/4)

● Example: Input: Month; ideas:
– Months with 30 days
– Months with 31 days
– February with 28 days (non leap year)
– February with 29 days (leap year)

● Month as number
(1 = January, …, 12 = December); ideas:

– Valid: ≥ 1 and ≤ 12
– Not valid: <1 or > 12
– Test: 0, 5, 14

Legend:
Red values: Not valid values
Green values: Valid values

21/01/12 Uwe Gühl - IT Quality and Software Test 05 23

Black-box Techniques
Boundary Value Analysis (1/3)

● Behaviour at the edge of each equivalence
partition is more likely to be incorrect than
behaviour within the partition
 Defect detection probable

● The maximum and minimum values of a
partition are its boundary values.

● Boundary of a valid partition is
a valid boundary value.

● Boundary of an invalid partition is
an invalid boundary value.

Design
corresponding
tests for each
boundary
value

21/01/12 Uwe Gühl - IT Quality and Software Test 05 24

Black-box Techniques
Boundary Value Analysis (2/3)

● Boundary value analysis
– can be applied at all test levels.
– is relatively easy to apply and its defect finding

capability is high.
– Is often considered as an extension of

equivalence partitioning or other black-box
test design techniques.

● Detailed specifications are helpful in
determining the interesting boundaries.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 25

Black-box Techniques
Boundary Value Analysis (3/3)

● Examples for usage:
– Equivalence classes for user input on screen
– time ranges (e.g., time out, transactional speed

requirements)
– table ranges (e.g., table size is 512*512).

● Example: Month as number (1 = January, …,
12 = December); ideas:

– Valid: ≥ 1 and ≤ 12
– Not valid: <1 or > 12
– Boundaries Test: 0, 1, 12, 13

Legend:
Red values: Not valid values
Green values: Valid values

21/01/12 Uwe Gühl - IT Quality and Software Test 05 26

Black-box Techniques
Decision Table Testing (1/7)

● Decision tables
– to capture system requirements that contain

logical conditions,
– to document internal system design.
– to record complex business rules that should be

implemented.
● When creating decision tables, the specification

is analysed, and conditions and actions of the
system are identified.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 27

Black-box Techniques
Decision Table Testing (2/7)

● The input conditions and actions are most often
boolean (TRUE - FALSE).

● The decision table contains the triggering
conditions, often combinations of true and false
for all input conditions, and the resulting actions
for each combination of conditions.

● Each column of the table corresponds to a
business rule that defines a unique combination
of conditions and which result in the execution
of the actions associated with that rule.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 28

Black-box Techniques
Decision Table Testing (3/7)

● The coverage standard commonly used with
decision table testing is to have at least one test
per column in the table, which typically involves
covering all combinations of triggering
conditions.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 29

Black-box Techniques
Decision Table Testing (4/7)

● Advantage of decision table testing
– It creates combinations of conditions that

otherwise might not have been exercised
during testing.

● When to use?
When the action of the software depends on
several logical decisions.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 30

Black-box Techniques
Decision Table Testing (5/7)

● Example [Dus07]: 8 Test Cases in the
beginning

21/01/12 Uwe Gühl - IT Quality and Software Test 05 31

Black-box Techniques
Decision Table Testing (6/7)

● Example [Dus07] Same impact

21/01/12 Uwe Gühl - IT Quality and Software Test 05 32

Black-box Techniques
Decision Table Testing (7/7)

● Example [Dus]: Reducing to 5 Test Cases

21/01/12 Uwe Gühl - IT Quality and Software Test 05 33

Black-box Techniques
State Transition Testing (1/6)

● A system may exhibit a different response
depending on current conditions or previous
history (its state).
 can be shown with a state transition diagram.

● It allows to view the software in terms of
– its states,
– transitions between states,
– the inputs or events that trigger state changes

(transitions),
– the actions which may result from those transitions.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 34

Black-box Techniques
State Transition Testing (2/6)

● The states of the system or object under test
are separate, identifiable and finite in number.

● A state table shows the relationship between
the states and inputs, and can highlight
possible transitions that are invalid.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 35

Black-box Techniques
State Transition Testing (3/6)

● Tests can be designed to
– cover a typical sequence of states,
– cover every state,
– exercise every transition,
– exercise specific sequences of transitions
– test invalid transitions.

● Usage of State transition testing
– embedded software,
– technical automation,
– modelling a business object with specific states (in business

scenarios)
– testing screen-dialogue flows (Web applications)

21/01/12 Uwe Gühl - IT Quality and Software Test 05 36

Black-box Techniques
State Transition Testing (4/6)

● Example 1: Fan

switched off

sm Room ventilator

Level 1

do / slow turn

Level 2

do / fast turn

Level 2 chosen /
switch 2

Level 1 chosen /
switch 1

21/01/12 Uwe Gühl - IT Quality and Software Test 05 37

Black-box Techniques
State Transition Testing (5/6)

● Example 2: Vendor machine [Dus07]
● Status: „empty“, „filled“ (less then full), „full”

21/01/12 Uwe Gühl - IT Quality and Software Test 05 38

Black-box Techniques
State Transition Testing (6/6)

● Example 2: Transition Tree [Dus07]

21/01/12 Uwe Gühl - IT Quality and Software Test 05 39

Black-box Techniques
Use Case Testing (1/18)

● Tests can be derived from use cases.
● A use case describes interactions between

actors (users or systems), which produce a
result of value to a system user or the
customer.

● Use cases may be described at the
– abstract level (business use case, technology-

free, business process level),
– the system level (system use case on the

system functionality level).

21/01/12 Uwe Gühl - IT Quality and Software Test 05 40

Black-box Techniques
Use Case Testing (2/18)

● Use Case has
– a main scenario,
– alternative scenarios,
– failure scenarios.
– preconditions which need to be met for the use

case to work successfully.
– postconditions which are the observable results

and final state of the system after the use
case has been completed.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 41

Black-box Techniques
Use Case Testing (3/18)

1. Enter customer data.
If customer is yet not registered UC 12 Register
customer.

2. Enter desired car category
3. Enter desired leasing period
4. If a car is available in the desired period:

1. Reserve a car
2. Enter credit card information
3. Print contract and sign
Otherwise:
Adapt item 2. or 3., if possible

Activities

The rental system is ready to get customer data and to realize a
lease contractPost condition

Leasing is done, and the customer has signed the contractResult

The rental system is ready to get customer data and to realize a
lease contractPre condition

Customer asks agentTrigger

Customer, agentActors

A customer comes to the car rental agency and chooses a car
which he rents for a fixed periodShort description

214 / Rent a carId / Name

Example of a
use case description

21/01/12 Uwe Gühl - IT Quality and Software Test 05 42

Black-box Techniques
Use Case Testing (4/18)

● Use cases
– describe the “process flows” through a system

based on its actual likely use,
– are very useful for designing acceptance tests

with customer/user participation.
● Test cases derived from use cases detect

– defects in the process flows during real-world
use of the system.

– integration defects caused by the interaction
and interference of different components

21/01/12 Uwe Gühl - IT Quality and Software Test 05 43

Black-box Techniques
Use Case Testing (5/18)

● Test Case
– Sequence of steps consisting of actions to be

performed on the system under test [Bla04]
– is the “basic unit” in Testing
– serves to validate the functionality and to

confirm the realization of a requirement
● functional
● non functional (quality criteria)

– originates typically out of an Use Case
– Usually NFR-Test Cases are taken from

regular Test Cases, if so simplification

21/01/12 Uwe Gühl - IT Quality and Software Test 05 44

Black-box Techniques
Use Case Testing (6/18)

● Test Case
– describes the role who should execute it
– contents Test Steps with

● Activities of the tester
● Input values
● Expected output values

– describes preconditions and postconditions

21/01/12 Uwe Gühl - IT Quality and Software Test 05 45

Black-box Techniques
Use Case Testing (7/18)

● Test Case – Example
– Test Case name „IU22_Create-Object“
– Test Case ID 7
– Priority 1
– Test classification Standard
– Preparation Hours 1
– Execution Hours 1
– Description Creation of an Object. The user must select an object

He has to decide which specific kind ...
– Risk Without Creation of objects Software can't be used
– Version 01
– is Test Case Chain []

21/01/12 Uwe Gühl - IT Quality and Software Test 05 46

Black-box Techniques
Use Case Testing (8/18)

● Test Case – Example (cont.) Condition
– Goal Creation of a new object
– Prerequisites Following objects must be available in database

to execute this test case:
* object A
* object B

– Remarks Function „select module“ is described in Test Case
„IU21_Display-Object“

21/01/12 Uwe Gühl - IT Quality and Software Test 05 47

Black-box Techniques
Use Case Testing (9/18)

● Test Case – Example (cont.) Test Steps
– StepNo. Description Comments Expected Result
– 10 Select an Selected Item will be

object in the highlighted
tree structure

– 20 Choose „create“ Dialog box opens
– 30 Choose radio

button
– 40 Enter Obj ID

21/01/12 Uwe Gühl - IT Quality and Software Test 05 48

Black-box Techniques
Use Case Testing (10/18)

● Following prioritization
Use Cases are typically prioritized

– High priority: Must – no discussion
– Medium priority: Should – necessary
– Low priority: Could – Nice to have

– should be considered in derived test cases

21/01/12 Uwe Gühl - IT Quality and Software Test 05 49

Black-box Techniques
Use Case Testing (11/18)

● Effort calculation
The more complex and the more effort in creating Use
Cases, the higher the test effort, e.g.
– Very complex Use Cases (> 1 week effort)

→ 12 Test Cases
– Medium complex Use Cases (> 1 day, ≤ 1 week effort)

→ 8 Test Cases
– Low complex Use Cases (≤ 1 day effort)

→ 4 Test Cases
– good basic to calculate effort in designing test cases

21/01/12 Uwe Gühl - IT Quality and Software Test 05 50

Black-box Techniques
Use Case Testing (12/18)

● Reviews of Use Cases as basic

Requirements
Engineer

Tester

Use
Cases

Review

21/01/12 Uwe Gühl - IT Quality and Software Test 05 51

Black-box Techniques
Use Case Testing (13/18)

● Reviews of Test Cases to achieve better quality

Requirements
Engineer

Tester

Test
Cases

Review

21/01/12 Uwe Gühl - IT Quality and Software Test 05 52

Black-box Techniques
Use Case Testing (14/18)

● Designing test cases from use cases may be
combined with other specification-based test
techniques.

21/01/12 Uwe Gühl - IT Quality and Software Test 05 53

Black-box Techniques
Use Case Testing (15/18)

● Test Scenario
– Synonym: Test Case Chain, Test Suite [Bla04]
– Collection of logically related test cases [Bla04]
– Test Scenarios are used to test processes –

were process requirements implemented
completely and correct?

– A Test Scenario is a combination of – possibly
modified (as a rule simplified) – Test Cases

– A Test Scenario arises typically from a Business
Scenario (Business Use Case)

21/01/12 Uwe Gühl - IT Quality and Software Test 05 54

Black-box Techniques
Use Case Testing (16/18)

● Test Scenario
– Test Scenarios typically test the data flow in the

system
– Tests usually don't end with testing the system itself

only
● Interface test

(e.g. with MQSeries
from IBM)

● System simulator Suggestion: Study
“Mocks Aren't Stubs” at

http://www.martinfowler.com/artic
les/mocksArentStubs.html

21/01/12 Uwe Gühl - IT Quality and Software Test 05 55

Black-box Techniques
Use Case Testing (17/18)

● Test Scenario Example “User logs in a
vocabulary training system and does 1st lecture”

– Test case 17 „First login“
– Test case 33 „Choose Language“

● Source language „English“, Target language „Thai“
● Level „Starter“
● Lesson „Vacancy“
● Learning strategy 1

– Test case 46 „First lesson“
– Test case 103 „Follow-up lesson“
– Test case 132 „Score“

● Choose Bar Chart

21/01/12 Uwe Gühl - IT Quality and Software Test 05 56

Black-box Techniques
Use Case Testing (18/18)

● Test data
– All data needed for testing
– Discussion

● Based on Business Object Data Model or
Physical Data Model

● Artificial data or based on real business data,
e. g. out of legacy systems

● Which test data are included with delivery?
● Feed of Test data
● Remove of Test data („nacked system“)

21/01/12 Uwe Gühl - IT Quality and Software Test 05 57

Comparison (1/2)
● White Box Testing

– Based on internal
structure, code,
database

– Typically done by
developer,
designer

– Test Levels:
Component,
Component Integration

● Black Box Testing
– Based on

Requirements,
Functionality

– Typically done by
(professional) testers,
users

– Test Levels:
System,
System Integration,
Acceptance

21/01/12 Uwe Gühl - IT Quality and Software Test 05 58

Comparison (2/2)
● White Box Testing

– Less organizational
effort

– Automation easy
– Higher code quality

● Black Box Testing
– Good Testing of the

complete software
– Review of

specification
– Independent from

implementation
– Test focus only on

specification
Less quality of
specification
 less quality of test
results

Suggestion: Study
http://tynerblain.com/
blog/2006/01/13/soft
ware-testing-series-
black-box-vs-white-

box-testing/

21/01/12 Uwe Gühl - IT Quality and Software Test 05 59

Sources
● International Software Testing Qualifications Board: Certified

Tester Foundation Level Syllabus, Released Version 2011,
http://istqb.org/display/ISTQB/Foundation+Level+Documents

● [Dus07] , Dr. K. Dussa-Zieger: Testen von Software-Systemen
FAU Erlangen-Nürnberg, SS 2007

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59

