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● White-box testing is based on an identified 
structure of the software or the system, 
as seen in the following examples:
– Component level: The structure of a software component, 

as for example
● statements,  branches,
● decisions,  distinct paths.

– Integration level: The structure may be a call tree 
(a diagram in which modules call other modules).

– System level: The structure may be a 
● menu structure,  web page structure,
● business process.

White-box Techniques
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White-box Techniques
Structural Coverages

Structural Coverage
● based on control flow analysis,
● gives no advice concerning test case creation,
● good starting point for thorough testing.
Other criteria for designing tests should be 
included in an effective testing strategy, based on
● data flow, and
● required functionality
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White-box Techniques
Structural Coverages

Structural Coverage Metrics cover
● Statement testing
● Decision testing

● Branch testing – Many sources mention that 
Decision testing is same like Branch testing, but 
ISTQB syllabus says: Note that decision and 
branch testing are the same at 100% coverage, 
but can be different at lower coverage levels.
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White-box Techniques
Structural Coverages

More Structural Coverage Metrics* are
● Branch testing
● Condition testing
● Multiple condition testing
● Condition determination testing
● Linear Code Sequence and Jump (LCSAJ) or 

loop testing
● Path testing

* Not discussed – see Syllabus ISTQB Advanced Level
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White-box Techniques
Statement Testing and Coverage
● Statement coverage

– done in component testing
– assessment of the percentage of executable 

statements that have been covered by a test case 
suite.

– Goals:
● Execution of all statements of a program at least once
● Ensuring there is no unreachable code (“dead code”)
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White-box Techniques
Statement Testing and Coverage
● Statement coverage is determined by 

– testedStatements = number of executable 
statements covered by (designed or executed) 
test cases

– allStatements = number of all executable 
statements in the code under test.

testedStatements
allStatements
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White-box Techniques
Statement Testing and Coverage
● Example 1

2 Test Cases for
100 % Statement 
Coverage
– A, B, F
– A, C, D, E, F

A

B C

E

D

F
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White-box Techniques
Statement Testing and Coverage
● Example 2

1 Test Case for 
100 % Statement 
Coverage

TC1: x = 1, y =2
Result: z = 3

/* z is greater value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

    z = z +1;
return z;

}
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White-box Techniques
Decision Testing and Coverage

● Decision coverage, related to branch testing, is 
the assessment of the percentage of decision 
outcomes (e.g., the True and False options of 
an IF statement) that have been exercised by a 
test case suite. 

● The decision testing technique derives test 
cases to execute specific decision outcomes.

● Branches originate from decision points in the 
code and show the transfer of control to 
different locations in the code.



01/02/12 Uwe Gühl - IT Quality and Software Test 06 12

White-box Techniques
Decision Testing and Coverage

● Decision coverage is determined by 

– testedDecisions = number of all decision 
outcomes covered by (designed or executed) 
test cases 

– allDecisions = number of all possible decision 
outcomes in the code under test.

● Decision testing is a form of control flow testing 
as it follows a specific flow of control through 
the decision points. 

testedDecisions
allDecisions
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White-box Techniques
Decision Testing and Coverage

● Example 1
4 Test Cases for
100 % Decision 
Coverage
– A, B, F
– A, C, F
– A, C, D, F
– A, C, D, E, F

A

B C

E

D

F
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White-box Techniques
Decision Testing and Coverage

● Example 2
2 Test Cases for 
100 % Decision 
Coverage

TC1: x = 1, y =2
Result: z = 3

TC2: x = 3, y = 2
Result: z = 4

/* z is greater value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

    z = z +1;
return z;

}
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White-box Techniques
Statement Coverage / Decision Coverage

● Decision coverage is stronger than statement 
coverage:
– 100% decision coverage guarantees 

100% statement coverage, 
– but not vice versa.
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● Means 
50 % Decision / 
Branch coverage 
also 
50% State coverage?

==> No!

White-box Techniques
Statement Coverage / Decision Coverage

Code example
int foo(int x, int y) {

int a = 0;
if (x>0) {

a = a+1;
a = a+1;

} else
    a = a+1;
}

[Büc10]
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White-box Techniques
Statement Coverage / Decision Coverage

Assessment
● Both statement and decision coverage are 

weak criteria 
● “Statement-coverage criterion is so weak that it 

is generally considered useless.” [p. 37 Mye04] 
● Statement coverage and decision coverage 

should be considered as a minimal 
requirement.
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White-box Techniques
Other Structure-based Techniques

● There are stronger levels of structural coverage 
beyond decision coverage, for example,

– Condition coverage and 
– Multiple condition coverage.

● The concept of coverage can also be applied at 
other test levels. 

● For example, at the integration level the 
percentage of modules, components or classes 
that have been exercised by a test case suite 
could be expressed as module, component or 
class coverage.
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White-box Techniques
Structural Coverages

Challenges [Büc10]
● Different metrics definitions around
● Sometimes you can't achieve 100 % coverage
● Coverage metrics have different names (e.g. 

Abbreviations have different meanings, like C0 
or C1 for statement coverage) 

● Not always clear, how coverages were 
measured (important when using tools)

● Kind of coding influences results of coverage 
analysis
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White-box Techniques
Structural Coverages

Hints [Büc10]
● Clarify, that you talk about the same structural 

coverage definitions
● Clarify in using coverage measuring tools, how 

these work
● Don't be relaxed because of 100% code 

coverage
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White-box Techniques
Cyclomatic Complexity

● Complexity
The degree to which a component or system 
has a design and / or internal structure that is 
difficult to understand, maintain and verify.

● The more complex a component or a system is, 
the higher the probability that

– test coverage is not complete
– defects occur
– maintenance gets more difficult
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity metric 
– could be used to measure the complexity of a 

module's decision structure. 
– is the number of linearly independent paths and 

therefore, the minimum number of paths that 
should be tested. 
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White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]: 
The number of independent paths through a 
program. Cyclomatic complexity M is defined 
as: 

M = L – N + 2P, where
– L = number of edges/links in a graph
– N = number of nodes in a graph
– P = number of disconnected parts of the graph 

(e.g. a called graph or subroutine)
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White-box Techniques
Cyclomatic Complexity

Example:
M = L – N + 2P

= 8 – 7 + 2
= 3

A

B C

E

D

F

G



01/02/12 Uwe Gühl - IT Quality and Software Test 06 25

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]: 
Alternative calculation, if you have a program 
with binary conditions only:

M = b + 1, where
– b = number of binary conditions
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B

C D

J

A

White-box Techniques
Cyclomatic Complexity

Example:
M = b + 1

= 5 + 1 
= 6

E F G H I

K
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White-box Techniques
Cyclomatic Complexity

Cyclomatic Complexity M 
● M is the upper bound for the number of test 

cases for decision coverage. 
● M > 10 should be prevented (following McCabe)
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White-box Techniques
Cyclomatic Complexity

● The higher M, the higher the probability of 
errors
– Studies of Sharpe [Sha08] have shown

● M = 11 had lowest probability of 28% of being fault-prone.
● M = 38 had a probability of 50% of being fault-prone.
● M ≥ 74 had 98 % plus probability of being fault-prone.

– Walsh collected data of 276 modules [McC96, 
Wal79]:
≈ 50 % had M < 10 with 4,6/100 statements error rate
≈ 50 % had M ≥ 10 with 5,6/100 statements error rate
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White-box Techniques
Cyclomatic Complexity

● Weakness
– Assumption that faults are proportional to decision 

complexity does not consider processing complexity 
and database structure.

– It does not differ between different kinds of decisions, 
which is counter intuitive

● An "IF-THEN-ELSE" statement is treated the same as a 
relatively complicated loop

● Also CASE statements are treated the same as nested IF 
statements

– It's possible that a program gets a high value for M, 
but is easy understandable (see example next page).
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White-box Techniques
Cyclomatic Complexity

Example:
const String monthsName (const int nummer) {
  switch(nummer)  {
 case 1: return "January";
 case 2: return "February";
 case 3: return "Mars";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
  }
  return "unknown month number";
}

Program has a high 
cyclomatic complexity 
M = 13.
But it is easy to  
understand.
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Experience-based Techniques
● Experience-based testing is where tests are derived 

from the tester’s skill and intuition and their experience 
with similar applications and technologies. 

● When used to augment systematic techniques, these 
techniques can be useful in identifying special tests 
not easily captured by formal techniques, especially 
when applied after more formal approaches. 

● However, this technique may yield widely varying 
degrees of effectiveness, depending on the testers’ 
experience.
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Experience-based Techniques
Error guessing

● Commonly used experience-based technique
● Testers anticipate defects based on experience. 
● A structured approach called “fault attack”

– Enumerate a list of possible defects, based on
● experience,
● available defect data,
● common knowledge about why software fails.

– Design tests that attack these defects.
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Experience-based Techniques
Exploratory testing

Exploratory testing is 
● concurrent 

– test design, 
– test execution, 
– test logging and learning,

● based on a test charter containing test 
objectives, 

● carried out within time-boxes.
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Experience-based Techniques
Exploratory testing

● Approach is useful under following conditions
– Only few or inadequate specifications available
– Severe time pressure,
– In order to augment or complete other, 

more formal testing.
● It can serve as a check on the test process, to 

help ensure that the most serious defects are 
found.
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Choosing Test Techniques
● The choice of which test techniques to use 

depends on a number of factors, including 
– the type of system, 
– regulatory standards, 
– customer or contractual requirements, 
– level of risk, 
– type of risk, 
– test objective, 
– documentation available,
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Choosing Test Techniques
● The choice of which test techniques to use 

depends on a number of factors, including (c'td) 
– knowledge of the testers, 
– time and budget, 
– development life cycle, 
– use case models and 
– previous experience with types of defects found.



01/02/12 Uwe Gühl - IT Quality and Software Test 06 37

Choosing Test Techniques
● Some techniques are more applicable to certain 

situations and test levels; others are applicable 
to all test levels.

● When creating test cases, testers generally use 
a combination of test techniques including 

– process,
– rule and data-driven techniques 

to ensure adequate coverage of the object 
under test.
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Sources
● International Software Testing Qualifications Board: Certified 

Tester Foundation Level Syllabus, Released Version 2011, 
http://istqb.org/display/ISTQB/Foundation+Level+Documents

● International Software Testing Qualifications Board: Certified 
Tester Advanced Level Syllabus, Released Version 2007,
http://istqb.org/display/ISTQB/Advanced+Level+Documents

● [Büc10] Frank Büchner: Irrtümer über Code Coverage, 
http://www.elektronikpraxis.vogel.de/index.cfm?
pid=890&pk=247210&p=1;  
http://www.elektronikpraxis.vogel.de/themen/embeddedsoftware
engineering/testinstallation/articles/252993/

● [McC76] T. McCabe, A complexity measure, in: IEEE 
Transactions on Software Engineering, Vol. 2, pp. 308-320, 
1976.
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Sources
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20899-0001, September 1996, 
http://www.mccabe.com/pdf/mccabe-nist235r.pdf

● [Mye04] Glenford J. Myers: The Art of Software Testing, 
Second Edition, John Wiley & Sons, Inc., 2004

● [Sha08] Rich Sharpe: McCabe Cyclomatic Complexity: the 
proof in the pudding, 2008, http://www.enerjy.com/blog/?p=198

● [Wal79] Walsh, T., “A Software Reliability Study Using a 
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Press, 1979.

● [Wik12] Wikipedia.org, Code coverage, 2012, 
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