
IT Quality and Software Test

Lesson 6
Test Design Techniques

Dynamic Testing II
V1.1

Uwe Gühl

Winter 2011/ 2012

01/02/12 Uwe Gühl - IT Quality and Software Test 06 2

Contents
● Test Design Techniques – Dynamic Testing II

– White-box Techniques
 (or Structure-based Techniques)

● Structural Coverages
● Statement Testing and Coverage
● Decision Testing and Coverage
● Statement Coverage / Decision Coverage
● Other Structure-based Techniques
● Structural Coverages – Challenges and Hints
● Cyclomatic Complexity

– Experience-based Techniques
– Choosing Test Techniques

01/02/12 Uwe Gühl - IT Quality and Software Test 06 3

● White-box testing is based on an identified
structure of the software or the system,
as seen in the following examples:
– Component level: The structure of a software component,

as for example
● statements, branches,
● decisions, distinct paths.

– Integration level: The structure may be a call tree
(a diagram in which modules call other modules).

– System level: The structure may be a
● menu structure, web page structure,
● business process.

White-box Techniques

01/02/12 Uwe Gühl - IT Quality and Software Test 06 4

White-box Techniques
Structural Coverages

Structural Coverage
● based on control flow analysis,
● gives no advice concerning test case creation,
● good starting point for thorough testing.
Other criteria for designing tests should be
included in an effective testing strategy, based on
● data flow, and
● required functionality

01/02/12 Uwe Gühl - IT Quality and Software Test 06 5

White-box Techniques
Structural Coverages

Structural Coverage Metrics cover
● Statement testing
● Decision testing

● Branch testing – Many sources mention that
Decision testing is same like Branch testing, but
ISTQB syllabus says: Note that decision and
branch testing are the same at 100% coverage,
but can be different at lower coverage levels.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 6

White-box Techniques
Structural Coverages

More Structural Coverage Metrics* are
● Branch testing
● Condition testing
● Multiple condition testing
● Condition determination testing
● Linear Code Sequence and Jump (LCSAJ) or

loop testing
● Path testing

* Not discussed – see Syllabus ISTQB Advanced Level

01/02/12 Uwe Gühl - IT Quality and Software Test 06 7

White-box Techniques
Statement Testing and Coverage
● Statement coverage

– done in component testing
– assessment of the percentage of executable

statements that have been covered by a test case
suite.

– Goals:
● Execution of all statements of a program at least once
● Ensuring there is no unreachable code (“dead code”)

01/02/12 Uwe Gühl - IT Quality and Software Test 06 8

White-box Techniques
Statement Testing and Coverage
● Statement coverage is determined by

– testedStatements = number of executable
statements covered by (designed or executed)
test cases

– allStatements = number of all executable
statements in the code under test.

testedStatements
allStatements

01/02/12 Uwe Gühl - IT Quality and Software Test 06 9

White-box Techniques
Statement Testing and Coverage
● Example 1

2 Test Cases for
100 % Statement
Coverage
– A, B, F
– A, C, D, E, F

A

B C

E

D

F

01/02/12 Uwe Gühl - IT Quality and Software Test 06 10

White-box Techniques
Statement Testing and Coverage
● Example 2

1 Test Case for
100 % Statement
Coverage

TC1: x = 1, y =2
Result: z = 3

/* z is greater value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

 z = z +1;
return z;

}

01/02/12 Uwe Gühl - IT Quality and Software Test 06 11

White-box Techniques
Decision Testing and Coverage

● Decision coverage, related to branch testing, is
the assessment of the percentage of decision
outcomes (e.g., the True and False options of
an IF statement) that have been exercised by a
test case suite.

● The decision testing technique derives test
cases to execute specific decision outcomes.

● Branches originate from decision points in the
code and show the transfer of control to
different locations in the code.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 12

White-box Techniques
Decision Testing and Coverage

● Decision coverage is determined by

– testedDecisions = number of all decision
outcomes covered by (designed or executed)
test cases

– allDecisions = number of all possible decision
outcomes in the code under test.

● Decision testing is a form of control flow testing
as it follows a specific flow of control through
the decision points.

testedDecisions
allDecisions

01/02/12 Uwe Gühl - IT Quality and Software Test 06 13

White-box Techniques
Decision Testing and Coverage

● Example 1
4 Test Cases for
100 % Decision
Coverage
– A, B, F
– A, C, F
– A, C, D, F
– A, C, D, E, F

A

B C

E

D

F

01/02/12 Uwe Gühl - IT Quality and Software Test 06 14

White-box Techniques
Decision Testing and Coverage

● Example 2
2 Test Cases for
100 % Decision
Coverage

TC1: x = 1, y =2
Result: z = 3

TC2: x = 3, y = 2
Result: z = 4

/* z is greater value+1*/
int foo(int x, int y) {

int z = x;
if (y > x) {

z = y;
}

 z = z +1;
return z;

}

01/02/12 Uwe Gühl - IT Quality and Software Test 06 15

White-box Techniques
Statement Coverage / Decision Coverage

● Decision coverage is stronger than statement
coverage:
– 100% decision coverage guarantees

100% statement coverage,
– but not vice versa.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 16

● Means
50 % Decision /
Branch coverage
also
50% State coverage?

==> No!

White-box Techniques
Statement Coverage / Decision Coverage

Code example
int foo(int x, int y) {

int a = 0;
if (x>0) {

a = a+1;
a = a+1;

} else
 a = a+1;
}

[Büc10]

01/02/12 Uwe Gühl - IT Quality and Software Test 06 17

White-box Techniques
Statement Coverage / Decision Coverage

Assessment
● Both statement and decision coverage are

weak criteria
● “Statement-coverage criterion is so weak that it

is generally considered useless.” [p. 37 Mye04]
● Statement coverage and decision coverage

should be considered as a minimal
requirement.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 18

White-box Techniques
Other Structure-based Techniques

● There are stronger levels of structural coverage
beyond decision coverage, for example,

– Condition coverage and
– Multiple condition coverage.

● The concept of coverage can also be applied at
other test levels.

● For example, at the integration level the
percentage of modules, components or classes
that have been exercised by a test case suite
could be expressed as module, component or
class coverage.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 19

White-box Techniques
Structural Coverages

Challenges [Büc10]
● Different metrics definitions around
● Sometimes you can't achieve 100 % coverage
● Coverage metrics have different names (e.g.

Abbreviations have different meanings, like C0
or C1 for statement coverage)

● Not always clear, how coverages were
measured (important when using tools)

● Kind of coding influences results of coverage
analysis

01/02/12 Uwe Gühl - IT Quality and Software Test 06 20

White-box Techniques
Structural Coverages

Hints [Büc10]
● Clarify, that you talk about the same structural

coverage definitions
● Clarify in using coverage measuring tools, how

these work
● Don't be relaxed because of 100% code

coverage

01/02/12 Uwe Gühl - IT Quality and Software Test 06 21

White-box Techniques
Cyclomatic Complexity

● Complexity
The degree to which a component or system
has a design and / or internal structure that is
difficult to understand, maintain and verify.

● The more complex a component or a system is,
the higher the probability that

– test coverage is not complete
– defects occur
– maintenance gets more difficult

01/02/12 Uwe Gühl - IT Quality and Software Test 06 22

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity metric
– could be used to measure the complexity of a

module's decision structure.
– is the number of linearly independent paths and

therefore, the minimum number of paths that
should be tested.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 23

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]:
The number of independent paths through a
program. Cyclomatic complexity M is defined
as:

M = L – N + 2P, where
– L = number of edges/links in a graph
– N = number of nodes in a graph
– P = number of disconnected parts of the graph

(e.g. a called graph or subroutine)

01/02/12 Uwe Gühl - IT Quality and Software Test 06 24

White-box Techniques
Cyclomatic Complexity

Example:
M = L – N + 2P

= 8 – 7 + 2
= 3

A

B C

E

D

F

G

01/02/12 Uwe Gühl - IT Quality and Software Test 06 25

White-box Techniques
Cyclomatic Complexity

● Cyclomatic complexity [McC76]:
Alternative calculation, if you have a program
with binary conditions only:

M = b + 1, where
– b = number of binary conditions

01/02/12 Uwe Gühl - IT Quality and Software Test 06 26

B

C D

J

A

White-box Techniques
Cyclomatic Complexity

Example:
M = b + 1

= 5 + 1
= 6

E F G H I

K

01/02/12 Uwe Gühl - IT Quality and Software Test 06 27

White-box Techniques
Cyclomatic Complexity

Cyclomatic Complexity M
● M is the upper bound for the number of test

cases for decision coverage.
● M > 10 should be prevented (following McCabe)

01/02/12 Uwe Gühl - IT Quality and Software Test 06 28

White-box Techniques
Cyclomatic Complexity

● The higher M, the higher the probability of
errors
– Studies of Sharpe [Sha08] have shown

● M = 11 had lowest probability of 28% of being fault-prone.
● M = 38 had a probability of 50% of being fault-prone.
● M ≥ 74 had 98 % plus probability of being fault-prone.

– Walsh collected data of 276 modules [McC96,
Wal79]:
≈ 50 % had M < 10 with 4,6/100 statements error rate
≈ 50 % had M ≥ 10 with 5,6/100 statements error rate

01/02/12 Uwe Gühl - IT Quality and Software Test 06 29

White-box Techniques
Cyclomatic Complexity

● Weakness
– Assumption that faults are proportional to decision

complexity does not consider processing complexity
and database structure.

– It does not differ between different kinds of decisions,
which is counter intuitive

● An "IF-THEN-ELSE" statement is treated the same as a
relatively complicated loop

● Also CASE statements are treated the same as nested IF
statements

– It's possible that a program gets a high value for M,
but is easy understandable (see example next page).

01/02/12 Uwe Gühl - IT Quality and Software Test 06 30

White-box Techniques
Cyclomatic Complexity

Example:
const String monthsName (const int nummer) {
 switch(nummer) {
 case 1: return "January";
 case 2: return "February";
 case 3: return "Mars";
 case 4: return "April";
 case 5: return "May";
 case 6: return "June";
 case 7: return "July";
 case 8: return "August";
 case 9: return "September";
 case 10: return "October";
 case 11: return "November";
 case 12: return "December";
 }
 return "unknown month number";
}

Program has a high
cyclomatic complexity
M = 13.
But it is easy to
understand.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 31

Experience-based Techniques
● Experience-based testing is where tests are derived

from the tester’s skill and intuition and their experience
with similar applications and technologies.

● When used to augment systematic techniques, these
techniques can be useful in identifying special tests
not easily captured by formal techniques, especially
when applied after more formal approaches.

● However, this technique may yield widely varying
degrees of effectiveness, depending on the testers’
experience.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 32

Experience-based Techniques
Error guessing

● Commonly used experience-based technique
● Testers anticipate defects based on experience.
● A structured approach called “fault attack”

– Enumerate a list of possible defects, based on
● experience,
● available defect data,
● common knowledge about why software fails.

– Design tests that attack these defects.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 33

Experience-based Techniques
Exploratory testing

Exploratory testing is
● concurrent

– test design,
– test execution,
– test logging and learning,

● based on a test charter containing test
objectives,

● carried out within time-boxes.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 34

Experience-based Techniques
Exploratory testing

● Approach is useful under following conditions
– Only few or inadequate specifications available
– Severe time pressure,
– In order to augment or complete other,

more formal testing.
● It can serve as a check on the test process, to

help ensure that the most serious defects are
found.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 35

Choosing Test Techniques
● The choice of which test techniques to use

depends on a number of factors, including
– the type of system,
– regulatory standards,
– customer or contractual requirements,
– level of risk,
– type of risk,
– test objective,
– documentation available,

01/02/12 Uwe Gühl - IT Quality and Software Test 06 36

Choosing Test Techniques
● The choice of which test techniques to use

depends on a number of factors, including (c'td)
– knowledge of the testers,
– time and budget,
– development life cycle,
– use case models and
– previous experience with types of defects found.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 37

Choosing Test Techniques
● Some techniques are more applicable to certain

situations and test levels; others are applicable
to all test levels.

● When creating test cases, testers generally use
a combination of test techniques including

– process,
– rule and data-driven techniques

to ensure adequate coverage of the object
under test.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 38

Sources
● International Software Testing Qualifications Board: Certified

Tester Foundation Level Syllabus, Released Version 2011,
http://istqb.org/display/ISTQB/Foundation+Level+Documents

● International Software Testing Qualifications Board: Certified
Tester Advanced Level Syllabus, Released Version 2007,
http://istqb.org/display/ISTQB/Advanced+Level+Documents

● [Büc10] Frank Büchner: Irrtümer über Code Coverage,
http://www.elektronikpraxis.vogel.de/index.cfm?
pid=890&pk=247210&p=1;
http://www.elektronikpraxis.vogel.de/themen/embeddedsoftware
engineering/testinstallation/articles/252993/

● [McC76] T. McCabe, A complexity measure, in: IEEE
Transactions on Software Engineering, Vol. 2, pp. 308-320,
1976.

01/02/12 Uwe Gühl - IT Quality and Software Test 06 39

Sources
● [McC96] NIST Special Publication 500-235, Structured Testing:

A Testing Methodology Using the Cyclomatic Complexity
Metric, Computer Systems Laboratory NIST Gaithersburg, MD
20899-0001, September 1996,
http://www.mccabe.com/pdf/mccabe-nist235r.pdf

● [Mye04] Glenford J. Myers: The Art of Software Testing,
Second Edition, John Wiley & Sons, Inc., 2004

● [Sha08] Rich Sharpe: McCabe Cyclomatic Complexity: the
proof in the pudding, 2008, http://www.enerjy.com/blog/?p=198

● [Wal79] Walsh, T., “A Software Reliability Study Using a
Complexity Measure,” AFIPS Conference Proceedings, AFIPS
Press, 1979.

● [Wik12] Wikipedia.org, Code coverage, 2012,
http://en.wikipedia.org/wiki/Code_coverage

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

