
Requirement

Meaning of Requirement

� In engineering, a requirement is a singular documented
physical and functional need that a particular product or
service must be or perform

� a feature of the system or a description of something the
system is capable of doing in order to fulfill the system’s
purpose

� Requirements engineering is the set of activities that
lead to the derivation of the system or software
requirements.

[1]

Requirements engineering

� Requirement Engineering is the process of establishing

the services that the customer requires from a system

and the constraints under which it operates and develops.

� a systems and software engineering process which covers

all of the activities involved in discovering, documenting

and maintaining a set of requirements for a computer-

based system.
[2]

Requirements engineering (cont’d)

� In the traditional waterfall model of the systems or

software engineering process, requirements engineering

is presented as the first stage of the development

process, with the outcome being a requirements

document or Software requirements specification.

� In fact, requirements engineering is a process that

continues through the lifetime of a system as the

requirements are subject to change and new

requirements must be elicited and documented and

existing requirements managed over the lifetime of the

system.

Characteristics of good requirements

Why are requirements important?

Projects fail because (source: Standish Group survey 1994)

� 13.1% incomplete requirements

� 12.4% lack of user involvement

� 10.6% lack of resources

� 9.9% unrealistic expectations

� 9.3% lack of executive support

� 8.7% changing requirements and specifications

� 8.1% lack of planning

� 7.5% system no longer needed

The Purpose of the Requirements Discipline

� The Requirements discipline intends to:

• Find agreement on what the system should do.

• Provide a better understanding of the system requirements.

• Define the boundaries of the system.

• Provide a basis for planning the technical contents of

iterations.

• Provide a basis for estimating cost.

• Define a user-interface for the system.

Requirement

In systems and software engineering

� In systems engineering, a requirement can be a

description of what a system must do, referred to as a

Functional Requirement.

� Another type of requirement specifies something about

the system itself, and how well it performs its functions.

Such requirements are often called Non-functional

requirements.

Functional Requirement

&

Non – Functional Requirement

Functional and Non-Functional

means of classification

� the most frequently used means of requirements

classification is Functional and Non-Functional.

� This classification helps identify whether a requirement

will affect the functionality of the system (Functional) or

whether it will constrain the system (Non-Functional).

� This classification is probably the most beneficial in that it

helps define what system functions are being considered.

Functional Requirement
� A requirement specifies a function that a system or

component must be able to perform

� Functional requirements may be calculations, technical
details, data manipulation and processing and other
specific functionality that define what a system is
supposed to accomplish.

� Generally, are expressed in the form "system must do
<requirement>“

� The plan for implementing is detailed in the system
design

� specify particular results of a system

� drive the application architecture of a system

Examples

A Functional Requirement is a requirement that, when

satisfied, will allow the user to perform some kind of

function.

For example:

� display of the number of records in a database

� The customer must place an order

� Display the heart rate, blood pressure and temperature of

patient connected to the patient monitor

Non – Functional Requirement

� A non – functional requirement is a statement of how a system

must behave, it is a constraint upon the system behavior

� non-functional requirements are "constraints", "quality

attributes", "quality goals", "quality of service requirements"

and "non-behavioral requirements“

� tend to identify “user” constraints and “system” constraints

� non-functional requirements are "system shall be

<requirement>“

� The plan for implementing is detailed in the system

architecture.

� specify overall characteristics such as cost and reliability.

� drive the technical architecture of a system.

Qualities

that is non-functional requirements, can be divided into

two main categories:

1. Execution qualities, such as security and usability,

which are observable at run time.

2. Evolution qualities, such as testability, maintainability,

extensibility and scalability, which are embodied in the

static structure of the software system.

Examples
� How up-to-date this number needs

� The customer must be able to access their account 24 hours a
day, seven days a week.

� The system must be unavailable from midnight until 1:00am
for backups.

� The customer must place an order within two minutes of
registering

� Display of the patient’s vital signs must respond to a change in
the patient’s status within 2 seconds

Functional VS Non-Functional

� Functional requirements define what a system is

supposed to do whereas non-functional

requirements define how a system is supposed to be.

� Functional requirements are usually in the form of

"system must do <requirement>", while non-

functional requirements are "system shall be

<requirement>".

characteristics

Characteristics of Functional Requirements and Non –

Functional Requirement they have same following

characteristics:

- uses simple language

- not ambiguous

- contains only one point

- specific to one type of user

- is qualified

- describes what and not how

Use Case

What is an "Use Case" ?

In software and systems engineering ,

use case

“is a list of steps, defining interactions between

role(actor) and system to achieve a goal.”

****A role (known in UML as an "actor" which can be a

human or an external system.)

[9]

In systems engineering, use cases are used at a

higher level than within software engineering, often

representing missions or stakeholder goals. The

detailed requirements may then be captured in

SysML(Systems Modeling Language) or as contractual

statements

[9]

Use Case with systems engineering

History of Use case

Since Jacobson originated use case

modeling in 1986 and many others have

contributed to improving this technique,

notably including Alistair Cockburn.

� [9]

Use case structure

Casual use case structure

Cockburn recognizes that projects may not always need
detailed "fully-dressed" use cases. He describes a Casual
use case with the fields:

� Title (goal)

� Primary Actor

� Scope

� Level

� (Story): the body of the use case is simply a paragraph or
two of text, informally describing what happens.

� [9]

Do you agree with him?

"There is no standard way to write the content of

a use case, and different formats work well in

different cases."

Martin Fowler states

[9]

Use case notation

� In order to represent an use

case to be easy to understand,

the relationships between all of

the use cases and actors

are represented in

an use case diagram,

originally based upon Ivar

Jacobson's Objectory notation.

Use Case Diagram

Usages of a use case diagram

[10]

What Are the Benefits of Use-Case Diagram?

� Used to communicate with the end users and domain experts

� Provides buy-in at an early stage of system development

� Insures a mutual understanding of the requirements

� Used to identify

� Who interacts with the system and what the system should do

� The interfaces the system should have

� Used to verify

� All requirements have been captured

� The development team understands the requirements

� [10]

Supplementary

Specification

Glossary

Use-Case Specifications

...

Use-Case Model

Actors

Use Cases

Relevant Requirements Deliverables or Artifacts

[10]

Major Concepts in Use-Case Diagram

� A use case defines a set of
use-case instances, where
each instance is a sequence
of actions a system
performs that yields an
observable result of value
to a particular actor.

Use Case

Actor

An actor represents

anything that interacts

with the system eg. a

human, hardware

device, or another

system can play.

[10]

• Who will supply, use, or remove
information?

• Who will use this functionality?

• Who is interested in a certain requirement?

• Where in the organization is the system
used?

• Who will support and maintain the system?

• What are the system’s external resources?

• What other systems will need to interact
with this one?

Actor

Useful Questions in Finding Actors

[10]

Example 1 : of use case diagram

UML use cases for a

simple shop model

http://wrice.egloos.com/4847326

Example 2 : of use case diagram

� Basic use case diagram for an ATM system

User Stories

Introduction to User Stories

� User stories serve the same purpose as use cases but

are not the same.

� A good way to think about a user story is that it is a

reminder to have a conversation with your customer ,

which is another way to say it's a reminder to do

some just-in-time analysis.

What is a User Story?

� A user story describes desired functionality from the

customer(user) perspective. A good user story describes

the desired functionality, who wants it, and how and why

the functionality will be used.

� They are in the format of about sentences of text written

by the customer in the customers terminology without

techno-syntax.

[4]

Usage

user stories define

�what is to be built in the software project. User

stories are prioritized by the customer to indicate

which are most important for the system and will

be broken down in tasks and estimated by the

developers.

But user stories are not just these small snippets of text.

Each user story is composed of three aspects:

1. Written description of the story, used for planning and

as a reminder

2. Conversations about the story that serve to flesh out

the details of the story

3. Tests that convey and document details that can be

used to determine when a story is complete

[5]

Components of User Story

Creating user stories

User stories generally follow the following template:

"As a <role>, I want <goal/desire> so that <benefit>“

but the shorter version is commonly used as well:

"As a <role>, I want <goal/desire>"

Six Features of a Good User Story

A well-written user story follows the INVEST model

� Independent

� Negotiable

� Valuable

� Estimable

� Small

� Testable

[6]

Independent

� One user story should be independent of another (as

much as possible). Dependencies between stories make

planning, prioritization, and estimation much more

difficult.

Negotiable

• A good story is negotiable. It is not an explicit

contract for features; rather, details will be co-

created by the customer and programmer

during development.

Valuable

� Each story has to be of value to the customer. One good

way of making stories valuable is to get the customer to

write them. Once a customer realizes that a user story is

not a contract and is negotiable, they will be much more

comfortable writing stories.

Estimable

� The developers need to be able to estimate a user story

to allow prioritization and planning of the story. If a story

is too large to be estimated, then the scenario is not

understood enough to prioritize or develop.

Small

� A good story should be small in effort, typically

representing no more than 2-3 weeks of effort. Smaller

units of work tend to receive smaller and more accurate

estimations.

Testable

• We do not develop what we cannot test.

If you can't test it then you will never know

when you are done.

Example: "software should be easy to use".

Examples

� As a student, I can find my grades online so that I don’t

have to wait until the next day to know whether I passed.

� As a non-administrative user, I want to modify my own

schedules but not the schedules of other users.

� As a book shopper, I can read reviews of a selected book

to help me decide whether to buy it

"As a <role>, I want <goal/desire> so that <benefit>"

COUNTEREXAMPLES

� “Write game rules.”

� Drawbacks: no business Value, not Estimable.

� Better: “As a newbie game player, I want to know who goes

first so we can start the game.”

� Better: “As a competitive gamer, I want a way to leapfrog my

opposing players.”

Benefits

� They are very helpful to business because

� they define what is to actually be built in the software project.

� The customer is able to prioritize in his formulated user stories

which ideas are most important for the developer

� the tasks can be broken down into elements for better

estimation.

� The user stories offer the chance for developers to

directly converse with the customer about their needs

and goals.

� The developer can test when the user stories are done,

and report back to the customer with results.

Limitations

Some of the limitations of user stories in agile
methodologies:

� They can be difficult to scale to large projects.

� They are regarded as conversation starters.

[7]

Use Case VS User Story

� A user story is a lightweight document that can be

written on a card (In order to , as a , I want). A User Story

doesn't capture all the details, it's an informal support for

the discussion.

� A use case is an heavyweight document that needs a

word document. It describes a "Normal Flow" of steps

and/or actions and "Alternative Flows" which are

detailed. A Use Case captures all the details, it's a formal

specification.

Use Case VS User Story (cont’d)

� A user story is from a customer's point of view, sometime

it's incorrect or incomplete. It may have no consideration

on performance, on error handling, or nothing on the

backend.

� A use case is from developer's point of view. It's accurate

and complete. It should answer all the requirements from

customers.

Use Case VS User Story (cont’d)

� User stories are about needs. You’re describing is a “raw” user

need. It’s something that the user needs to do in his day-to-day

job. If you never build any software for him, then that need will

still exist!

� Use cases are about the behavior you’ll build into the

software to meet those needs. A developer should be able to

read a use case that what the software needs to do. It has a lot

of detail, and describes everything that the developer needs to

build in order to meet the user’s need. That’s why it needs to

be clear and unambiguous.

[8]

Exercise 1 : Making Use Case Diagram

Please design use case diagram for

“a simple restaurant model”

Answer exercise 1:

References

1. http://en.wikipedia.org/wiki/Requirements

2. http://en.wikipedia.org/wiki/Requirements_engineering

3. s

4. http://www.subcide.com/articles/how-to-write-meaningful-
user-stories/

5. http://www.mountaingoatsoftware.com/articles/27-
advantages-of-user-stories-for-requirements

6. http://agilesoftwaredevelopment.com/blog/vaibhav/good-
user-story-invest

7. http://en.wikipedia.org/wiki/User_story

8. http://www.stellman-
greene.com/2009/05/03/requirements-101-user-stories-vs-
use-cases/

References

9. http://en.wikipedia.org/wiki/Use_case

10. Use Case -. Minder Chen, 1994-2004. UML. Use Case

Modeling.

11. http://en.wikipedia.org/wiki/Non-

functional_requirement

12. http://www.requirementsauthority.com/functional-

and-non-functional.html

13. http://en.wikipedia.org/wiki/Functional_requirements

14. http://www.lessons-from-history.com/node/83

