
Test Driven Development
and

Unit Test

Contents

• TDD (Test Driven Development) (1 / 2)
o What is TDD ?
o TDD Cycle
o Benefit of TDD
o Discussion

• Unit Test (2 / 2)
o What is Unit Test ?
o Goal
o Mock Object
o Benefit

Contents

Have you ever been in
these situation ?

เคยไหมท่ีไม่รู้จะเร่ิมเขียนโปรแกรมยงัไงดี
No idea where to start ?

เคยไหมท่ีเขียนไปแล้วโปรแกรมเพ่ิมขึน้เร่ือยๆ แต่ไปไม่ถึง Goal ซักที
Plenty of code, and seem to be further but still not
achieve the goal

Have you ever been in
these situation ?

เคยไหมท่ีเขียนโปรแกรมไปแล้วพบกับปัญหา ทาํให้ต้องกลบัมาแก้ไขและเรียบเรียงใหม่
Found a defect that have to fix or re-design at the very
beginning ?

เคยไหมท่ี function ท่ีเขียนขึน้มาไม่ได้ใช้ เพราะอยู่นอกเหนือจาก requirement
Wasting time to implement a useless function that out
of requirement

What is TDD?

 Test Driven Development or TDD is a software
development process that relies on the repetition of a
very short development cycle.

TDD Cycle

How ?

1. Before writing any code, you must first write an
automated test for your code. While writing the
automated tests, you must take into account all
possible inputs, errors, and outputs. This way, your
mind is not clouded by any code that’s already been
written.

o To write a test, the developer must clearly understand the
feature's specification and requirements.

o The developer can accomplish this through use cases and user
stories that cover the requirements and exception conditions.

TDD Cycle

2. The first time you run your automated test, the test
should fail (indicating that the code is not yet ready)

o If it does not fail, then either the proposed “new” feature already
exists or the test is defective.

TDD Cycle

3. Afterward, you can begin programming. Since
there’s already an automated test, as long as the code
fails it, it means that it’s still not ready. The code can
be fixed until it passes all assertions.

o Writing some code that aim to pass the test only. Don’t cover
other function that is not a part of the test.

TDD Cycle

4. Since the code passes the test, you can then begin
cleaning it up, via refactoring. As long as the code still
passes the test, it means that it still works. You no
longer have to worry about changes that introduce new
bugs.

TDD Cycle

5. Start the whole thing over again with some other
method or program.

In Brief

1. The developer writes a failing automated test case
that defines a desired improvement or new function.
2. Produces code to pass that test.
3. Re-factors the new code to acceptable standards.

Benefit of TDD

1. TDD offers more than just simple validation of
correctness, but can also drive the design of a
program.

o They have to imagine how the functionality will be used by clients

before implement it.
o This benefit is complementary to Design by Contract as it

approaches code through test cases rather than through
mathematical assertions or preconceptions.

2. TDD offers the ability to take small steps when
required.

o It allows a programmer to focus on the task at hand as the first

goal is to make the test pass. So, raising up the confidence in the
code.

3. Total code implementation time is typically shorter.

o Large numbers of tests help to limit the number of defects in the

code.

4. TDD can lead to more modularized, flexible, and
extensible code.
o Because the methodology requires that the developers think of the

software in terms of small units that can be written and tested
independently and integrated together later. This leads to smaller,
more focused classes, looser coupling, and cleaner interfaces.

5. Since TDD has Refactor Phase, the code is cleaned
up and easier to be implemented by other developers.

Discussion

" TDD shorten the overall time but it increase the
complexity for implementing the software project "

What do you think ? ..

What is Unit Testing?

 In computer programming, unit testing is a method
by which individual units of source code are tested to
determine if they are fit for use. Unit tests are created
by programmers or occasionally by white box testers
during the development process.

Goal of Unit Testing

 The primary goal of unit testing is to take the
smallest piece of testable software in the application,
isolate it from the remainder of the code, and
determine whether it behaves exactly as you expect.

More about Unit Testing

 Each unit is tested separately before integrating
them into modules to test the interfaces between
modules. Unit testing has proven its value in that a
large percentage of defects are identified during its
use.

Case study without unit testing

 For example, if you have two units and decide it
would be more cost effective to glue them together and
initially test them as an integrated unit, an error could
occur in a variety of places:

• Is the error due to a defect in unit 1?
• Is the error due to a defect in unit 2?
• Is the error due to defects in both units?
• Is the error due to a defect in the interface between

the units?
• Is the error due to a defect in the test?

Finding the error (or errors) in the integrated
module is much more complicated than first
isolating the units, testing each, then
integrating them and testing the whole.

Benefit of unit testing

1.Simplifies Integration
o Unit testing may reduce uncertainty in the units

themselves and can be used in a bottom-up
testing style approach.

o By testing the parts of a program first and then
testing the sum of its parts, integration testing
becomes much easier.

2. Facilitate Change
o Unit testing allows the programmer to refactor code

at a later date, and make sure the module still works
correctly (e.g., in regression testing).

o The procedure is to write test cases for all functions
and methods so that whenever a change causes a
fault, it can be quickly identified and fixed.

3. Design
o an automatic test to test the internal workings of a

class. It should be a stand-alone test which is not
related to other resources

Be Aware

Separation of interface from implementation

• Because some classes may have references to other classes, testing

a class can frequently spill over into testing another class.

Simulate Situation : class that depend on a
database

 In order to test the class, the tester often writes
code that interacts with the database. This is a
mistake, because a unit test should usually not go
outside of its own class boundary, and especially
should not cross such process/network boundaries.

• Because this can introduce unacceptable

performance problems to the unit test-suite.

• Crossing such unit boundaries turns unit tests into
integration tests, and when test cases fail, makes it
less clear which component is causing the failure.

 Instead, the software developer should create an
abstract interface around the database queries, and
then implement that interface with their own mock
object.

What is Mock Object ?

• Mock Object is simulated object that mimic the
behavior of real object in controlled ways.

• A programmer typically creates a mock object to

test the behavior of some other object, in much the
same way that a car designer uses a crash test
dummy to simulate the dynamic behavior of a
human in vehicle impacts.

 By abstracting mock object, the independent unit
can be more thoroughly tested than may have been
previously achieved. This results in a higher quality
unit that is also more maintainable.

Figure (A) Figure (B)

Example : Accepting input in java

Manual assign value to variable instead of assign value
from Scanner (input reader class).

Some available frameworks

LANGUAGE FRAMEWORK
java junit
c# csUnit

python pyunit
visual basic vbUnit3

Example

Create a calculator program with has only one function,
adder, which calculate the addition between 2
numbers.
There are 2 cases for the result

1.show the correct summation answer if both number

are valid input
2.show statement "invalid input" whether 1st number

or 2nd number is an invalid input

* valid number mean valid number format

References

http://net.tutsplus.com/tutorials/php/the-newbies-guide-to-test-driven-
development

http://en.wikipedia.org/wiki/Test-driven_development

http://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx

http://en.wikipedia.org/wiki/Mock_object

	Test Driven Development�and �Unit Test
	Contents
	Contents
	Have you ever been in these situation ?
	Have you ever been in these situation ?
	What is TDD?
	TDD Cycle
	How ?
	TDD Cycle
	Slide Number 10
	TDD Cycle
	Slide Number 12
	TDD Cycle
	Slide Number 14
	TDD Cycle
	Slide Number 16
	In Brief
	Benefit of TDD
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Discussion
	What is Unit Testing?
	Goal of Unit Testing
	More about Unit Testing
	Case study without unit testing
	Slide Number 28
	Benefit of unit testing
	Slide Number 30
	Slide Number 31
	Be Aware
	Simulate Situation : class that depend on a database
	Slide Number 34
	What is Mock Object ?
	Slide Number 36
	Example : Accepting input in java
	Some available frameworks
	Example
	References

