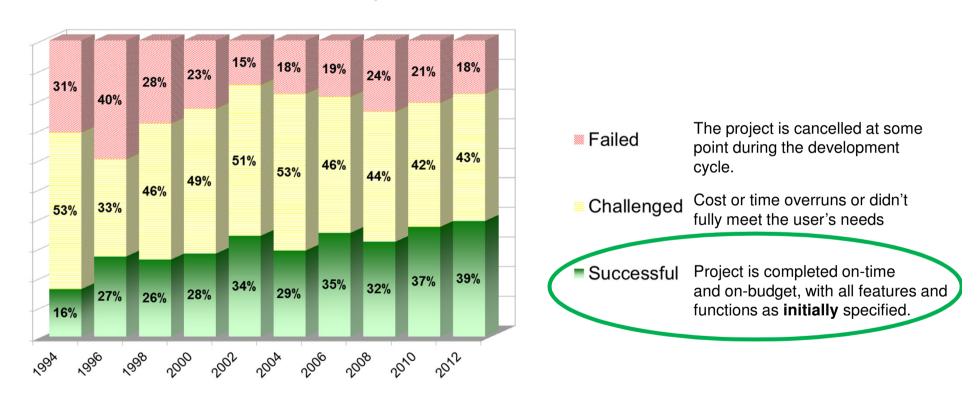


Requirements Engineering

An introduction

Uwe Gühl 11.02.2016


Contents

- Introduction
- Definitions
- Identification of requirements
 - Business Scenarios
 - ISO/IEC 9126
 - Requirements list
- Design of requirements
- Review of requirements
- Change of requirements
- Summary
- Sources

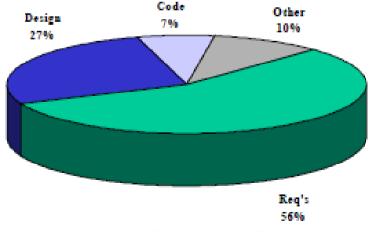
Standish Group (classical definition of successful)

Results of IT-Projects [Wik16b]

Standish Group (new definition of successful)

Results of IT-Projects [HW15]

→ So, with new definition in 2012 27% of the projects were successful, compared to 39% following the classical definition


Project Challenged Factors [SG14]	% of Responses	S
1. Lack of User Input	12.8%	0
2. Incomplete Requirements & Specifica	tions 12.3%	0
3. Changing Requirements & Specification	ons 11.8%	0
4. Lack of Executive Support	7.5%	'
5. Technology Incompetence	7.0%	'
6. Lack of Resources	6.4%	0
7. Unrealistic Expectations	5.9%	, 0
8. Unclear Objectives	5.3%	0
9. Unrealistic Time Frames	4.3%	, 0
10. New Technology	3.7%	, 0
Other	23.0%	/ 0

Project Success Factors [SG14]	% of Responses
1. User Involvement	15.9%
2. Executive Management Support	13.9%
3. Clear Statement of Requirements	13.0%
4. Proper Planning	9.6%
5. Realistic Expectations	8.2%
6. Smaller Project Milestones	7.7%
7. Competent Staff	7.2%
8. Ownership	5.3%
9. Clear Vision & Objectives	2.9%
10. Hard-Working, Focused Staff	2.4%
Other	13.9%

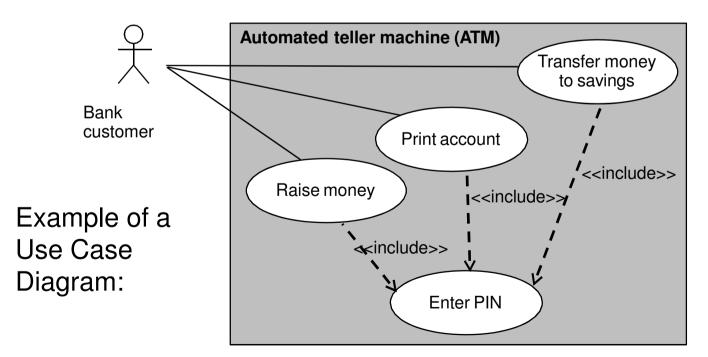
- Importance of requirements
 - Out of a global survey about 48% of developers cited changing or poorly documented project requirements as the reason for failure [ADA15]
 - Often root cause of defects in IT projects:
 Requirements [Ric05]

 Goal of Requirements Engineering: Common understanding of principal and contractor concerning a product or system to be developed

- Requirements Engineering [Gli14]
 A systematic and disciplined approach to the specification and management of requirements with the following goals:
 - (1) Knowing the relevant requirements, achieving a consensus among the stakeholders about these requirements, documenting them according to given standards, and managing them systematically
 - (2) Understanding and documenting the stakeholders' desires and needs
 - (3) Specifying and managing requirements to minimize the risk of delivering a system that does not meet the stakeholders' desires and needs

- Requirement [IEEE610.90], [Win99]:
 - (1) A condition or capability needed by a user to solve a problem or achieve an objective.
 - (2) A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification or other formally imposed documents.
 - (3) A documented representation of a condition or capability as in (1) or (2).

- Requirements analysis [IEEE610.90], [Win99]:
 - (1) The process of studying user needs to achieve a definition of a system, a hardware or of software requirements.
 - (2) The process of studying and refining system, hardware or software requirements.


- Requirements Engineer [Mod16]
 Synonyms: Requirements Analyst, Functional Architect, Business (Systems) Analyst, Business
 - There is no industry standards for the scope of the requirements engineer.
 - It's something between an IT business analyst and a systems analyst.
- · A requirements engineer
 - masters subject area, analysis, and IT
 - works with project stakeholders to detect, understand, analyze, and document the requirements for a system

Use Case [Wik16a]

• List of steps, typically defining interactions between an actor (role) and a system, to achieve

a goal.

Example of a Use Case Description:

Let / Nie ver e	044 / Dayler and						
ld / Name	214 / Rent a car						
Short description	A customer comes to the car rental agency and chooses a car which he rents for a fixed period						
	Which he rents for a fixed period						
Actors	Customer, agent						
Trigger	Customer asks agent						
Pre condition	The rental system is ready to get customer data and to realize a lease contract						
Result	Leasing is done, and the customer has signed the contract						
Post condition	The rental system is ready to get customer data and to realize a lease contract						
Activities	 Enter customer data. If customer is yet not registered ⇒ UC 12 Register customer. Enter desired car category Enter desired leasing period If a car is available in the desired period: a. Reserve a car b. Enter credit card information c. Print contract and sign Otherwise: Adapt item 2. or 3., if possible 						

Business Scenario (Synonym Business Use Case)

- Collection of related, structured activities or tasks, so that a particular customer achieves a particular goal
- Typically composed of a set of Use Cases (Use Case chains)

User Story [Mou16]

 Short, simple description of a feature told from the perspective of the person who desires the new capability, usually a user or customer of the system.

Proposed template: As a <type of user>, I want <some goal> so that <some reason>. As a scheduler
I want to update a
given appointment
so that I could add
another date

Example of a User Story

Epic [Coh11]

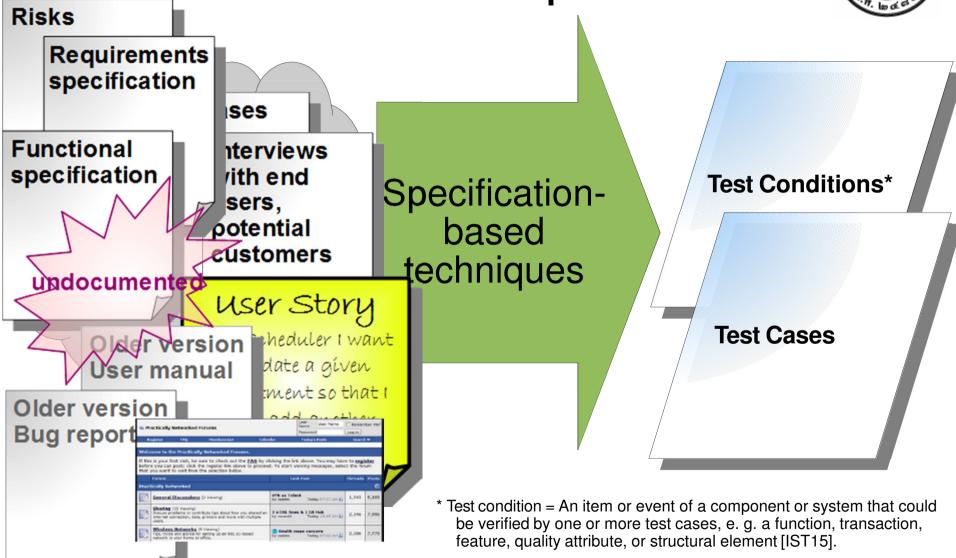
- Epics are feature-level work that encompasses many user stories, it just means "big user story"
- Unlike sprints, scope change in epics is a natural aspect of agile development
- Epics are almost always delivered over a set of sprints

Theme [Coh11]

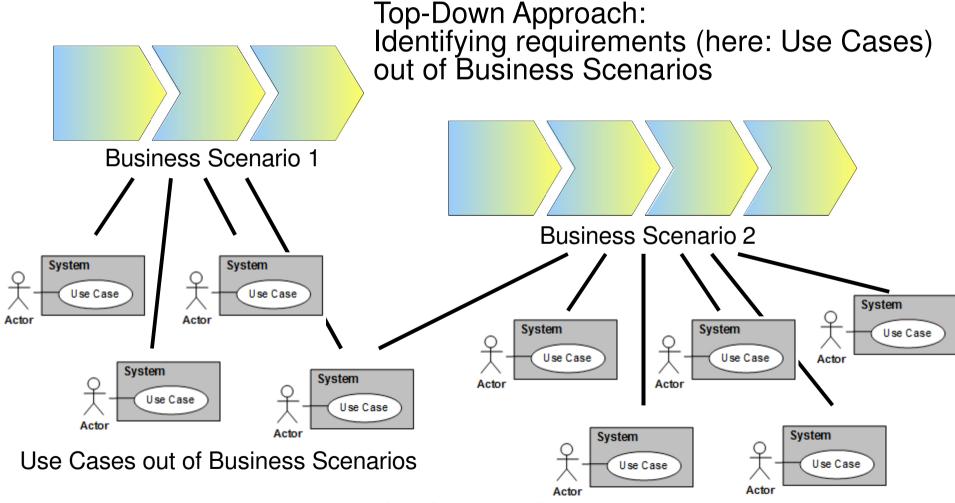
 A theme is a collection of user stories, a group of stories

- How to identify requirements / risks?
 - Interviews with stakeholders
 E.g. Principal, marketing, sales, end user, project manager, ...
 - Based on stakeholder analysis, environment analysis
 - Definition of Business Scenarios
 - > ... to identify business needs
 - > ... to define use cases (Top down approach)
 - > ... to identify test scenarios
 - > ... to prioritize testing activities
 - Methods: Interviews, paper prototyping, desktop tests, workshops

- Unknown Non-functional Requirements are a big risk in IT projects, if so called "self evident requirements" are not fulfilled ... like security, performance, load
- Specification documents often leave the area "Non- Functional Requirements" empty or imprecise ("fast", "easy to use", "secure")
 - > IT Architecture cannot follow conditions
 - → No proper test planning / design / execution
- Proposal: Early identification of non-functional requirements, e.g. using quality model defined by ISO 9126 [Wik16]


General testing objectives

Specificationbased techniques **Test Conditions***


Test Cases

^{*} Test condition = An item or event of a component or system that could be verified by one or more test cases, e. g. a function, transaction, feature, quality attribute, or structural element [IST15].

Example

- 1. User enters a search term
- 2. User gets a list of results
- 3. User chooses out of the list of results a document
- 4. User changes for the document the font size to 44 pixel
- 5. User overlays the document with a grid
- 6. User adopts setting for all documents

Example

1. User enters a search term

UC₁

- 2. User gets a list of results
- 3. User chooses out of the list of results a document
- 4. User changes for the document the font size to 44 pixel
- 5. User overlays the document with a grid

UC 2

6. User adopts setting for all documents

UC3

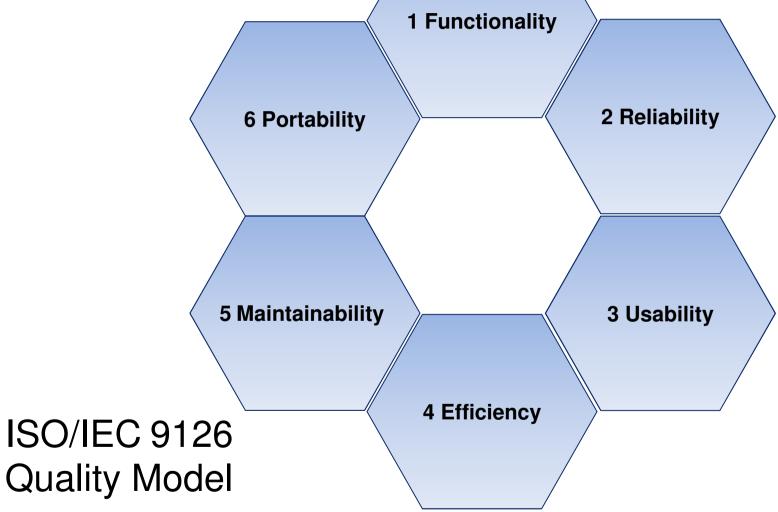
- A Business Scenario should describe a concrete, unambiguous, and complete action on process level
 - Positive
 Definition of a main scenario, contenting all important features (success story)
 - Alternatives
 Definition of important branches as second step
 - Negative
 Definition of important exceptions / faults (e. g. what happens if a search finds no result)

- Use Case diagrams and activity diagrams as well as visualization with screenshots could be used for better communication.
- Active description with numbering of the steps
- Avoid generalization like
 - "and so on"
 - "etc."
 - "easy"
 - "different options"

- Advantages
 - bring forward the common understanding of business processes and their importance
 - are a basic for identification and prioritization of use cases
 - could help for project controlling (Which Business Scenario will be realized in which release?)

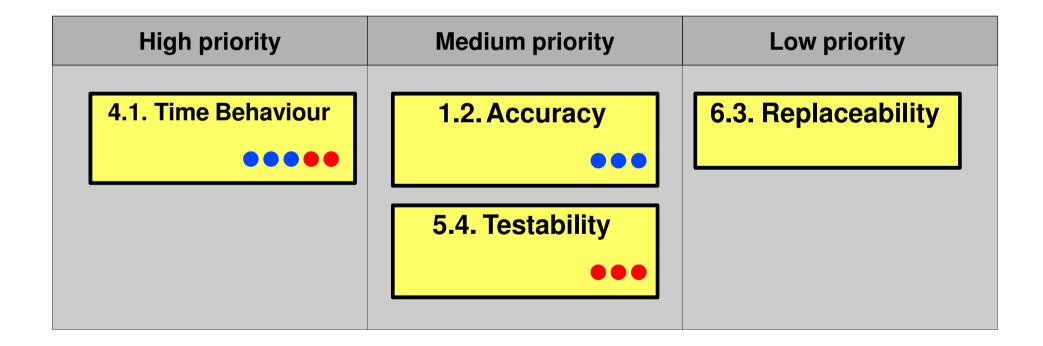
Identification of requirements ISO/IEC 9126

- Proposal: Using ISO/IEC 9126 [Wik16] to identify functional and non-functional requirements
- Expected result
 - Prioritization of quality criteria
 - List of corresponding requirements including acceptance criteria


Identification of requirements ISO/IEC 9126

- ISO/IEC 9126 Software engineering Product quality [Wik16]
 - was an international standard for the evaluation of software quality – focusing on the product
 - tries to develop a common understanding of the project's objectives and goals
 - applies to characteristics to evaluate in a specific degree, how much of the agreements got fulfilled
- Hint: Since 2011 there is a successor available: ISO 25010:2011 has eight product quality characteristics (in contrast to ISO 9126's six), and 39 sub-characteristics

Identification of requirements ISO/IE/



Identification of requirements ISO/IEC 9126

Expected result: (1) Prioritization of quality criteria

Identification of requirements ISO/IEC 9126

Expected result: (2) Collection of requirements, acceptance criteria, tasks to be executed, etc.

					Acceptance criteria		Actions
Ic -	Quality characteristic -	Prioritiz	Requirements	ld	- k	Criteria 🔻	Task ▼
1	Functionality	o Prio 2					
	Accuracy						
1.	2 E.g. the needed precision of results		Currency must be presented by two deci	ima	al pla	ices	
		o Prio 2					
		o Prio 2					
		o Prio 2					
4	Efficiency	++ Prio 1					
	Time Behaviour						
	Response time, processing time,						
4.	1 throughput	++ Prio 1					
5	Maintainability	o Prio 2					
	Testability:						
5.	4 Effort needed to test a system change.	o Prio 2					
6	Portability	Prio 3					
	Adaptability:						
	Ability of the system to change to new						
	specifications or to move to another						
6.	3 operating environment	Prio 3					

Identification of requirements Requirements list

	Requiremen	Quantific	cation				Implementation			
ld	Requirement	Stakeholder role	Stakeholder contact person	Initial date	Complexity	Priority	Responsible	Due date	Status	Actions
Req001	Example of a requirement, low complex, with high priority. Already in progress	operation	Ben	27-Jan-16	medium	high	Uwe	27-Jan-16	in	2016-01-26 [Uwe] Approved, implementation in
Req002	Business requirement, low priority	business	Dek	27-Jan-16	low	low	Com	plex	city	16-01-26 [Uwe] approved and delivered.
Req003		end user	John	27-Jan-16	high	mediur	16-01-26 [Uwe] decli		16-01-26 [Uwe] declined, will not be implementd	
Req004	Developer requirement, complexity and priority to be defined (tbd)	developer	Jim	27-Jan-16	tbd	tbd				16-01-26 [Uwe] Meeting planned to discuss preeding
	Complexity Attribute to for implem testing – tbd = to k	cal enta	ıtion	rt	I	diun ow igh	n			
				t	bd					

Identification of requirements Requirements list

	Requiremen	Quantific	cation				Implementation			
ld	Requirement	Stakeholder role	Stakeholder contact person	Initial date	Complexity	Priority	Responsible	Due date	Status	Actions
nequui	Example of a requirement, low complex, with high priority. Already in progress	operation	Ben	27-Jan-16	medium	high	Pric	ority	ess	2016-01-26 [Uwe] Approved, implementation in progress
	Business requirement, low priority	business	Dek	27-Jan-16	low	low		•	е	2016-01-26 [Uwe] approved and delivered.
Req003	End user requirement, high complex	end user	John	27-Jan-16	high	medium			nec	2016-01-26 [Uwe] declined, will not be implementd
Req004	Developer requirement, complexity and priority to be defined (tbd)	developer	Jim	27-Jan-16	tbd	tbd			n	2016-01-26 [Uwe] Meeting planned to discuss proceeding
 Priority. Urgency of implementation 										
	Priority:							gh		
	- tbd = to I			lc)W					
							med	dium	1	
							tk	od		

Identification of requirements Requirements list

	Requirement	Quantific	cation	Implementation								
	Requirement	Stakeholder role	Stakeholder contact person	Initial date	Complexity	Priority	Responsible	Due date	Status	Actions		
	with high priority. Aiready in progress	operation	Ben	27-Jan-16	medium	high	Uwe	27-Jan-16	in progress	·	oved, implementation in	
		business	Dek	27-Jan-16	low	low	Uwe	26-Feb-16	done	Status '	ved and delivered.	
		end user	John	27-Jan-16	high	medium	Uwe	25-Mrz-16	declined	2	ed, will not be implementd	
Req004	Developer requirement, complexity and priority to be defined (tbd)	developer	Jim	27-Jan-16	tbd	tbd	Uwe	29-Apr-16	open	7	ng planned to discuss	

- Status:
 - openNo activities yet
 - declinedNo implementation
 - in progress
 - done
 Additional field "result" to be considered

Design of requirements

Motivation

- Assumption: Requirements / Ideas are found
 - as text fragments
 - as minutes of workshops
 - as pictures of story cards collected on a wall
- Now look into it.

Goal: Writing good requirements

How to: Using guidelines

Good requirements:

Correct: They have to say the right things.

Consistent: They can't contradict each other.

• Unambiguous: Each must have one interpretation.

Complete: They cover all the important stuff.

Relevant: Each must meet a customer need.

Testable: There must be a way to

check if they are met.

Traceable: There must be a way to

determine their origin.

Prioritization

- What are the most crucial and most risky requirements?
 - To be developed first
 - To be tested first
- Prioritization of requirements

High priority: Must – to be realized in the

next iteration, e.g. product release.

Medium priority: Should – necessary.

Low priority: Could – Nice to have

if there is enough time.

Important for scope management

- KISS Keep it simple and smart
 - Keep sentences and paragraphs short.
 - Use the active voice.
 - Use proper grammar, spelling, and punctuation.
 - Use terms consistently and define them in a glossary or data dictionary.

Quality measure

Glossary to speak "the same language".
There should be only one common glossary.
There should be one person responsible.

- There should be no gaps, no inconsistencies
- Important: Acceptance criteria

Excerpt (out of agile software development): "Definition of done" is an agreement to decide, when a realization of a user story is "done", means could be accepted by the customer. E.g. presentation successful, automated test cases passed.

- Use of concrete examples the more realistic,
 the better => Basis for test cases
- To see if a requirement statement is sufficiently well defined, read it from the developer's perspective.

- "Right" granularity
 - A helpful granularity guideline is to write individually testable requirements with a small number of related tests
 - Watch out for multiple requirements that have been aggregated into a single statement.
 "and" / "or" in a requirement
 - → Several requirements might have been combined.

- Consistent level of detail
 - Not too detailed
 For example, "A valid color code shall be R for red" and "A valid color code shall be G for green" might be split out as separate requirements.
 - Not too general
 For example, "The product shall respond to editing directives entered by voice" describes an entire subsystem, not a single functional requirement.

- Once and only once
- Avoid stating requirements redundantly in the specification.
- Reason: If there are multiple instances of requirements:
 - Difficult maintenance of the requirements specification document
 - Source for inconsistencies, if not all redundant requirements get updated at the same time

Example: User stories

- User Stories are high-level requirements
- Large User Stories are known as Epics (compare to Business Scenario) – typically too big to be implemented in an iteration
- User Stories are often written on index cards or sticky notes, and stored on walls.
- They shift the focus from writing about features to discussing them.
- User Story is something like a promise to talk.

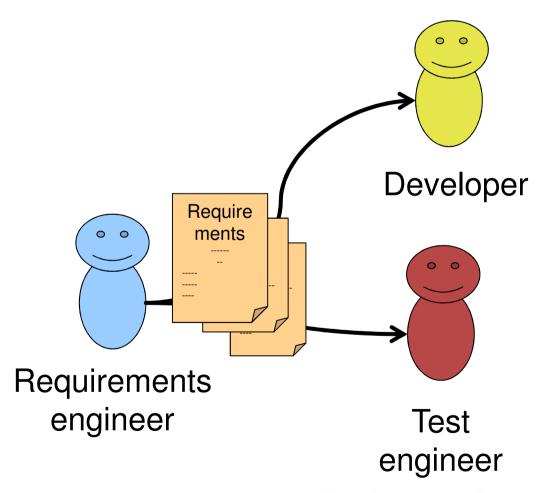
User Story
As a Scheduler I want
to update a given
appointment so that I
could add another
date.

Example: User stories

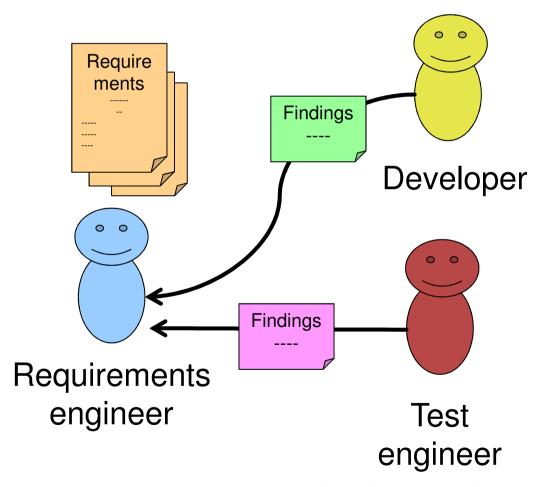
 Well written user stories should follow the INVEST model [Wak03]

I ndependent no overlap, no dependencies

N egotiable captures the essence, not details


V aluable a specified value for the customer

E stimable to help in planning and prioritization


S mall should be conducted in a sprint

T estable more effective, if tests were written before implementation

Try to be active in reviewing requirements.

Problems?Ask questions

Proposals?Propose better statements

Example 1

"The product shall provide status messages at regular intervals not less than every 60 seconds."

- Problems?
- Proposals?

Example 1

"The product shall provide status messages at regular intervals not less than every 60 seconds."

Problems?

- 1. What are the status messages and how are they supposed to be displayed to the user?
- 2. What part of "the product" are we talking about?
- 3. Is the interval between status messages really supposed to be at least 60 seconds, so showing a new message every 10 years is okay?
- 4. Perhaps the intent is to have no more than 60 seconds elapse between messages; would 1 millisecond be too short?
- 5. The word "every" just confuses the issue.
- 6. Verifiable: As a result of these problems, the requirement is not verifiable.

Example 1

"The product shall provide status messages at regular intervals not less than every 60 seconds."

Proposals?

1. Status Messages.

- 1.1. The Background Task Manager shall display status messages in a designated area of the user interface at intervals of 60 plus or minus 10 seconds.
- 1.2. If background task processing is progressing normally, the percentage of the background task processing that has been completed shall be displayed.
- 1.3. A message shall be displayed when the background task is completed.
- 1.4. An error message shall be displayed if the background task has stalled.

Example 1

"The product shall provide status messages at regular intervals not less than every 60 seconds."

- Proposal Assessment
 - Splitting into multiple requirements
 - > Each will require separate test cases
 - Each will be separately traceable.
 - If several requirements are strung together in a paragraph, it is easy to overlook one during construction or testing.

Example 2

"The HTML Parser shall produce an HTML markup error report which allows quick resolution of errors when used by HTML novices"

Problems?

Proposals?

Example 2

"The HTML Parser shall produce an HTML markup error report which allows quick resolution of errors when used by HTML novices"

- Problems?
 - 1. What goes into the error report?
 - 2. What is "quick"?
 - 3. How to find someone who calls herself an HTML novice and see if she can resolve errors quickly enough using the report?

Example 2

"The HTML Parser shall produce an HTML markup error report which allows quick resolution of errors when used by HTML novices"

Proposal

Proposal

- The HTML Parser shall produce an error report that contains the line number and text of any HTML errors found in the parsed file and a description of each error found.
- If no errors are found, the error report shall not be produced."

Example 2

"The HTML Parser shall produce an HTML markup error report which allows quick resolution of errors when used by HTML novices"

- Proposal Assessment
 - Defined: What needs to go into the error report
 - Benefit: Designer decides what the report should look like
 - Plus: An exception condition is defined:
 If there aren't any errors, don't generate a report

- Requirements are changing [Sch01]
 - Small projects: Up to 25% of requirements are changing
 - Large projects: Up to 50% of requirements are changing
- Possible reasons:
 - Stakeholder does not like delivered solution.
 - Market requests changed.

- Regular look at the requirements as they are living!
 - Prioritization
 Focus on the most important requirements and on the requirements to be implemented next.
 - Enforce communication
 Requirements Engineer Developer Tester
 - Regular milestones, short development cycles
 Regular feedback concerning implementation of requirements.

- Required: Positive attitude concerning change:
 - Changes are okay better to change instead of implementing something "wrong"!
- Change management process
 Clear rules have to be defined, agreed and followed
 - Classical: Change management including a change control board (CCB)
 - Agile: Continuous update of backlog and considering changed requirements in sprint planning

- Ideas as discussed before result in "Agile software development"; example Scrum:
 - Basics: User Stories as "atomic requirements".
 - Collection of User Stories as basic wish list what makes the product great.
 - Regular planning: Agreement, which user stories to be implemented in next sprint
 - → Following prioritization by customer.
 - Regular review: Acceptance of delivered solution.

 Ideas as discussed before result in "Agile software development"; example Scrum:

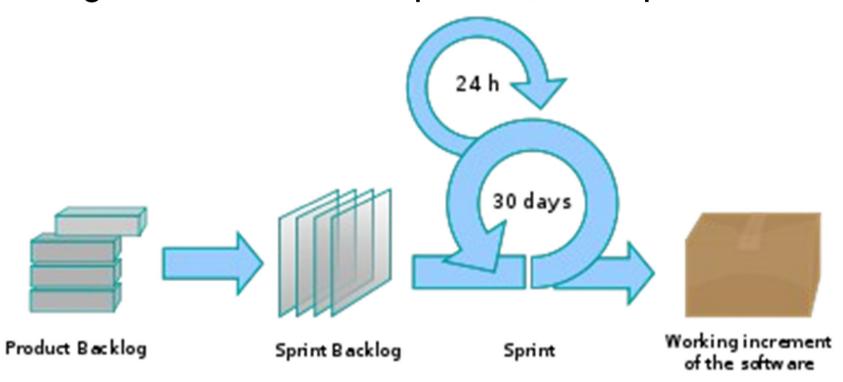


Image source: https://commons.wikimedia.org/wiki/File:Scrum_process.svg

Summary

- Requirements Engineering
 - ... to get better projects
 - ... to face main problems of IT projects
- First activity: Identification of requirements
 - Business Scenarios
 - > to focus on business related requirements
 - > to find Use Cases with top down approach
 - to implement the most important requirements first.
 - Non-Functional Requirements
 - > to be taken serious
 - > to be identified e.g. with ISO / IEC 9126 as check list.

Summary

- There are a lot of techniques and ideas, how to identify, to write, and to update requirements.
- A constructive, willing to learn organization is extremely helpful for successful requirements engineering.

Want to learn more?

- Professional organizations
 - International Requirements Engineering Board [IRE16]
 offer a certification program to get
 "Certified Professional for Requirements Engineering".
- Books
 - Klaus Pohl, Chris Rupp: Requirements Engineering Fundamentals, 1st edition, Rocky Nook Inc., 2011
 - Karl E. Wiegers: More About Software Requirements: Thorny Issues and Practical Advice, Microsoft Press, 2005
 - Ian Alexander, Ljerka Beus-Dukic: Discovering Requirements How to Specify Products and Services, Wiley, 2009
- Example for a specification: "The project Aardvark Spec" @ http://www.joelonsoftware.com/articles/AardvarkSpec.html

Sources

- [ADA15] Application Developers Alliance, Developer Insights Report, August 2015, <u>http://www.appdevelopersalliance.org/developer-insights-report-2015</u>
- [AG16] Daud Alam, Uwe Gühl: Projektmanagement für die Praxis, Springer, 2016 (in German)
- [Coh11] Mike Cohn: User Stories, Epics and Themes, October 24, 2011, <u>http://www.mountaingoatsoftware.com/blog/stories-epics-and-themes</u>
- [Gli14] Martin Glinz, A Glossary of Requirements Engineering Terminology, Version 1.6, May 2014, https://www.ireb.org/en/downloads/
- [HW15] Shane Hastie, Stéphane Wojewoda: Standish Group 2015 Chaos Report Q&A with Jennifer Lynch on Oct 04, 2015, http://www.infoq.com/articles/standish-chaos-2015
- [IRE16] International Requirements Engineering Board, 2016, https://www.ireb.org/
- [IST15] International Software Testing Qualifications Board (ISTQB): Standard Glossary of Terms Used in Software Testing, Version 3.01, March 26th, 2015, http://www.istqb.org/downloads/glossary.html
- [Mod16] MODERNanalyst.com: The Requirements Engineer Role; http://www.modernanalyst.com/TheProfession/Roles/RequirementsEngineer/tabid/188/Default.aspx
- [Mou16] Mountain Goat: User Stories; An Agile Requirements Approach, 2016, http://www.mountaingoatsoftware.com/agile/user-stories

Sources

- [PR11], Klaus Pohl, Chris Rupp: Basiswissen Requirements Engineering. Aus- und Weiterbildung zum "Certified Professional for Requirements Engineering", 3rd edition, 2011, dpunkt.verlag
- [Ric05] Randall W. Rice: STBC The Economics of Testing, 2005, <u>http://www.riceconsulting.com/public_pdf/STBC-WM.pdf</u>
- [Sch01] Bruno Schienmann: Kontinuierliches Anforderungsmanagement, Prozesse Techniken Werkzeuge, Addison-Wesley, 2001
- [SG14] The Standish Group: Report Chaos, 2014, https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
- [Wak03] Bill Wake: INVEST in Good Stories, and SMART Tasks, 2003, <u>http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/</u>
- [Wie99] Karl E. Wiegers: Writing Quality Requirements, 1999, http://processimpact.com/articles/qualreqs.html
- [Wik16] Wikipedia: ISO/IEC 9126, 2016, https://en.wikipedia.org/wiki/ISO/IEC 9126
- [Wik16a] Wikipedia: Use Case, 2016, https://en.wikipedia.org/wiki/Use_case
- [Wik16b] Wikipedia: Chaos-Studie, 2016, https://de.wikipedia.org/wiki/Chaos-Studie
- [Win99] Mario Winter: Qualitätssicherung für objektorientierte Software: Anforderungsermittlung und Test gegen die Anforderungsspezifikation, 1999, http://deposit.fernuni-hagen.de/2527/1/dissWinter.pdf

Backup

ISO/IEC 9126

Model

1 Functionality

6 Portabi

2 Poliobility

1.1.Suitability

Does the software the specified tasks?

1.2.Accuracy

E.g. the needed precision of results

5 Maintaina

1.3.Interoperability
Cooperates with specified systems

1.4.Compliance ...with conditions / regulations

1.5.Security
No unauthorized access possible

1 Functionality

2.1.Maturity

concerns frequency of failure of the software.

2.2. Fault Tolerance

Ability to withstand (and recover) from failure like unexpected inputs.

2.3.Recoverability

Ability to recover a failed system including data / network

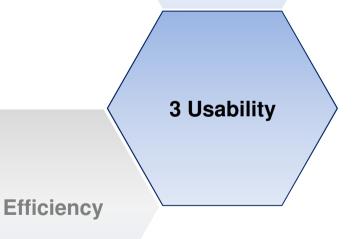
2 Reliability

3 Usability

4 Efficiency

1 Functionality

6 Portability


2 Reliability

3.1.Learnability
Learning effort for different users

3.2.Understandability

How easy could systems functions be understood?

3.3.Operability:
To keep a system in in a safe and reliable functioning condition

1 Functionality

6 Portability

2 Reliability

4.1 Time Behaviour Response time, processing time, throughput

4.2 Resource Behaviour: Usage of RAM, disk space, network, energy

5 Maintainability

3 Usability

4 Efficiency

1 Functionality

6 Portability

5 Maintainability

5.1. Stability:

Capability to avoid unexpected effects from modifications of the system

5.2. Analyzability:

Ability to identify the root cause of a failure, e.g. with system logs

5.3.Changeability: Effort to do changes at the system

5.4.Testability:
Effort needed to test a system change.

y Model

1 Functionality

6 Portability

5 Maintainability

6.1.Installability:

Effort to install a system in a specific environment

6.2. Replaceability:

How easy is it to exchange a given software component within a specified environment (compatibility of data)

6.3. Adaptability:

Ability of the system to change to new specifications or to move to another operating environment