
Requirements Engineering

An introduction

Uwe Gühl
11.02.2016

Contents

• Introduction
• Definitions
• Identification of requirements

– Business Scenarios

– ISO/IEC 9126

– Requirements list

• Design of requirements
• Review of requirements
• Change of requirements
• Summary
• Sources

11.02.2016 Uwe Gühl - Requirements Engineering 2

Introduction

Winter 2015 / 2016 Uwe Gühl - Software PM 01 3

Results of IT-Projects [Wik16b]

Project is completed on-time

and on-budget, with all features and

functions as initially specified.

Cost or time overruns or didn’t

fully meet the user’s needs

The project is cancelled at some

point during the development

cycle.

(classical definition of successful)

Introduction

Winter 2015 / 2016 Uwe Gühl - Software PM 01 4

Results of IT-Projects [HW15]

New definition of “successful”

since 2011: On time, on budget with

a satisfactory result [HW15]

Cost or time overruns or didn’t

fully meet the user’s needs

The project is cancelled at some

point during the development

cycle.

(new definition of successful)

� So, with new definition in 2012
27% of the projects were
successful, compared to 39%
following the classical definition

Introduction

Project Challenged Factors [SG14] % of Responses

1. Lack of User Input 12.8%

2. Incomplete Requirements & Specifications 12.3%

3. Changing Requirements & Specifications 11.8%

4. Lack of Executive Support 7.5%

5. Technology Incompetence 7.0%

6. Lack of Resources 6.4%

7. Unrealistic Expectations 5.9%

8. Unclear Objectives 5.3%

9. Unrealistic Time Frames 4.3%

10. New Technology 3.7%

Other 23.0%

Winter 2015 / 2016 Uwe Gühl - Software PM 01 5

Introduction

Project Success Factors [SG14] % of Responses

1. User Involvement 15.9%

2. Executive Management Support 13.9%

3. Clear Statement of Requirements 13.0%

4. Proper Planning 9.6%

5. Realistic Expectations 8.2%

6. Smaller Project Milestones 7.7%

7. Competent Staff 7.2%

8. Ownership 5.3%

9. Clear Vision & Objectives 2.9%

10. Hard-Working, Focused Staff 2.4%

Other 13.9%

Winter 2015 / 2016 Uwe Gühl - Software PM 01 6

Introduction

• Importance of requirements

– Out of a global survey about 48% of developers
cited changing or poorly documented project
requirements as the reason for failure [ADA15]

– Often root cause of defects in IT projects:
Requirements [Ric05]

11.02.2016 Uwe Gühl - Requirements Engineering 7

Definition

• Goal of Requirements Engineering:

Common understanding of

principal and contractor

concerning a product or system

to be developed

11.02.2016 Uwe Gühl - Requirements Engineering 8

Definition

• Requirements Engineering [Gli14]
A systematic and disciplined approach to the
specification and management of requirements with
the following goals:
(1) Knowing the relevant requirements,

achieving a consensus among the stakeholders
about these requirements,

documenting them according to given standards,
and managing them systematically

(2) Understanding and documenting the stakeholders’
desires and needs

(3) Specifying and managing requirements
to minimize the risk of delivering a system that does
not meet the stakeholders’ desires and needs

11.02.2016 Uwe Gühl - Requirements Engineering 9

Definition

• Requirement [IEEE610.90], [Win99]:

(1) A condition or capability needed by a user to
solve a problem or achieve an objective.

(2) A condition or capability that must be met or
possessed by a system or system component
to satisfy a contract, standard, specification or
other formally imposed documents.

(3) A documented representation of a condition or
capability as in (1) or (2).

11.02.2016 Uwe Gühl - Requirements Engineering 10

Definition

• Requirements analysis [IEEE610.90], [Win99]:

(1)The process of studying user needs to achieve

a definition of a system, a hardware or of

software requirements.

(2)The process of studying and refining system,

hardware or software requirements.

11.02.2016 Uwe Gühl - Requirements Engineering 11

Definition

• Requirements Engineer [Mod16]
Synonyms: Requirements Analyst, Functional
Architect, Business (Systems) Analyst, Business

– There is no industry standards for the scope of the
requirements engineer.

– It's something between an IT business analyst and a
systems analyst.

• A requirements engineer

– masters subject area, analysis, and IT

– works with project stakeholders to detect, understand,
analyze, and document the requirements for a system

11.02.2016 Uwe Gühl - Requirements Engineering 12

Definition

Use Case [Wik16a]

• List of steps, typically defining interactions

between an actor (role) and a system, to achieve

a goal.

11.02.2016 Uwe Gühl - Requirements Engineering 13

Raise money

Print account

Automated teller machine (ATM)

Transfer money
to savings

Bank
customer

<<include>>

Enter PIN

<<include>>

<<include>>

Example of a
Use Case
Diagram:

Definition

11.02.2016 Uwe Gühl - Requirements Engineering 14

Example of a
Use Case
Description:

Id / Name 214 / Rent a car

Short description
A customer comes to the car rental agency and chooses a car
which he rents for a fixed period

Actors Customer, agent

Trigger Customer asks agent

Pre condition
The rental system is ready to get customer data and to realize a
lease contract

Result
Leasing is done, and the customer has signed the contract

Post condition
The rental system is ready to get customer data and to realize a
lease contract

Activities

1. Enter customer data.
If customer is yet not registered � UC 12 Register
customer.

2. Enter desired car category

3. Enter desired leasing period

4. If a car is available in the desired period:
a. Reserve a car

b. Enter credit card information
c. Print contract and sign

Otherwise:

Adapt item 2. or 3., if possible

Definition

Business Scenario

(Synonym Business Use Case)

• Collection of related, structured activities or
tasks, so that a particular customer achieves a
particular goal

• Typically composed of a set of Use Cases

(Use Case chains)

11.02.2016 Uwe Gühl - Requirements Engineering 15

Definition

User Story [Mou16]

• Short, simple description of a feature told from
the perspective of the person who desires the
new capability, usually a user or customer of the
system.

Proposed template:
As a <type of user>,
I want <some goal>
so that <some reason>.

11.02.2016 Uwe Gühl - Requirements Engineering

Example of a
User Story

As a scheduler
I want to update a
given appointment
so that I could add

another date

16

Definition

Epic [Coh11]

• Epics are feature-level work that encompasses
many user stories, it just means “big user story”

• Unlike sprints, scope change in epics is a natural
aspect of agile development

• Epics are almost always delivered over a set of
sprints

Theme [Coh11]

• A theme is a collection of user stories, a group of
stories

11.02.2016 Uwe Gühl - Requirements Engineering 17

Identification of requirements

• How to identify requirements / risks?

– Interviews with stakeholders
E.g. Principal, marketing, sales, end user, project
manager, ...
Based on stakeholder analysis, environment analysis

– Definition of Business Scenarios

� … to identify business needs

� … to define use cases (Top down approach)

� … to identify test scenarios

� … to prioritize testing activities

– Methods: Interviews, paper prototyping, desktop tests,
workshops

11.02.2016 Uwe Gühl - Requirements Engineering 18

Identification of requirements

• Unknown Non-functional Requirements are a big
risk in IT projects, if so called
“self evident requirements” are not fulfilled
… like security, performance, load

• Specification documents often leave the area
“Non- Functional Requirements” empty or imprecise
(“fast”, “easy to use”, “secure”)
� IT Architecture cannot follow conditions
� No proper test planning / design / execution

• Proposal: Early identification of
non-functional requirements, e.g. using
quality model defined by ISO 9126 [Wik16]

11.02.2016 Uwe Gühl - Requirements Engineering 19

Identification of requirements

11.02.2016 Uwe Gühl - Requirements Engineering 20

* Test condition = An item or event of a component or system that could
be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [IST15].

General
testing

objectives

Test Conditions*

Test Cases

Specification-
based

techniques

Identification of requirements

11.02.2016 Uwe Gühl - Requirements Engineering 21

* Test condition = An item or event of a component or system that could
be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [IST15].

General
testing

objectives

Test Conditions*

Test Cases

Specification-
based

techniques

Identification of requirements

Business Scenarios

11.02.2016 Uwe Gühl - Requirements Engineering 22

Business Scenario 1

Business Scenario 2

Use Cases out of Business Scenarios

Top-Down Approach:
Identifying requirements (here: Use Cases)
out of Business Scenarios

Identification of requirements

Business Scenarios

Example

1. User enters a search term

2. User gets a list of results

3. User chooses out of the list of results a document

4. User changes for the document the font size to 44

pixel

5. User overlays the document with a grid

6. User adopts setting for all documents

11.02.2016 Uwe Gühl - Requirements Engineering 23

UC 3

UC 2

UC 1

Identification of requirements

Business Scenarios

Example

1. User enters a search term

2. User gets a list of results

3. User chooses out of the list of results a document

4. User changes for the document the font size to 44

pixel

5. User overlays the document with a grid

6. User adopts setting for all documents

11.02.2016 Uwe Gühl - Requirements Engineering 24

Identification of requirements

Business Scenarios

• A Business Scenario should describe a
concrete, unambiguous, and complete action on
process level

– Positive
Definition of a main scenario, contenting all
important features (success story)

– Alternatives
Definition of important branches as second step

– Negative
Definition of important exceptions / faults (e. g.
what happens if a search finds no result)

11.02.2016 Uwe Gühl - Requirements Engineering 25

Identification of requirements

Business Scenarios

• Use Case diagrams and activity diagrams as

well as visualization with screenshots could be

used for better communication.

• Active description with numbering of the steps

• Avoid generalization like

– “and so on”

– “etc.”

– “easy”

– “different options”

11.02.2016 Uwe Gühl - Requirements Engineering 26

Identification of requirements

Business Scenarios

• Advantages

– bring forward the common understanding of
business processes and their importance

– are a basic for identification and prioritization of
use cases

– could help for project controlling (Which Business
Scenario will be realized in which release?)

11.02.2016 Uwe Gühl - Requirements Engineering 27

Identification of requirements

ISO/IEC 9126

• Proposal: Using ISO/IEC 9126 [Wik16] to

identify functional and non-functional

requirements

• Expected result

– Prioritization of quality criteria

– List of corresponding requirements including
acceptance criteria

11.02.2016 Uwe Gühl - Requirements Engineering 28

Identification of requirements

ISO/IEC 9126
• ISO/IEC 9126 Software engineering – Product

quality [Wik16]

– was an international standard for the evaluation of
software quality – focusing on the product

– tries to develop a common understanding of the
project's objectives and goals

– applies to characteristics to evaluate in a specific
degree, how much of the agreements got fulfilled

• Hint: Since 2011 there is a successor available:
ISO 25010:2011 has eight product quality
characteristics (in contrast to ISO 9126's six), and
39 sub-characteristics

11.02.2016 Uwe Gühl - Requirements Engineering 29

Identification of requirements

ISO/IEC 9126

ISO/IEC 9126
Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 30

2 Reliability

1 Functionality

3 Usability

4 Efficiency

6 Portability

5 Maintainability

Identification of requirements

ISO/IEC 9126

Expected result: (1) Prioritization of quality criteria

11.02.2016 Uwe Gühl - Requirements Engineering 31

1.2.Accuracy

���

6.3. Replaceability

5.4. Testability

���

4.1. Time Behaviour

�����

Medium priority Low priorityHigh priority

Identification of requirements

ISO/IEC 9126

Expected result: (2) Collection of requirements,

acceptance criteria, tasks to be executed, etc.

11.02.2016 Uwe Gühl - Requirements Engineering 32

Identification of requirements

Requirements list

11.02.2016 Uwe Gühl - Requirements Engineering 33

• Complexity:

Attribute to calculate effort

for implementation and

testing

– tbd = to be defined

Requirement description Quantification Implementation
Id Requirement Stakeholder

role

Stakeholder

contact

person

Initial date Complexity Priority Responsible Due date Status Actions

Req001
Example of a requirement, low complex,

with high priority. Already in progress
operation Ben 27-Jan-16 medium high Uwe 27-Jan-16

in

progress

2016-01-26 [Uwe] Approved, implementation in

progress

Req002
Business requirement, low priority

business Dek 27-Jan-16 low low Uwe 26-Feb-16 done 2016-01-26 [Uwe] approved and delivered.

Req003
End user requirement, high complex

end user John 27-Jan-16 high medium Uwe 25-Mrz-16 declined 2016-01-26 [Uwe] declined, will not be implementd

Req004
Developer requirement, complexity and

priority to be defined (tbd)
developer Jim 27-Jan-16 tbd tbd Uwe 29-Apr-16 open

2016-01-26 [Uwe] Meeting planned to discuss

proceeding

Complexity

medium

low

high

tbd

Identification of requirements

Requirements list

11.02.2016 Uwe Gühl - Requirements Engineering 34

• Priority:

Urgency of implementation

– tbd = to be defined

Requirement description Quantification Implementation
Id Requirement Stakeholder

role

Stakeholder

contact

person

Initial date Complexity Priority Responsible Due date Status Actions

Req001
Example of a requirement, low complex,

with high priority. Already in progress
operation Ben 27-Jan-16 medium high Uwe 27-Jan-16

in

progress

2016-01-26 [Uwe] Approved, implementation in

progress

Req002
Business requirement, low priority

business Dek 27-Jan-16 low low Uwe 26-Feb-16 done 2016-01-26 [Uwe] approved and delivered.

Req003
End user requirement, high complex

end user John 27-Jan-16 high medium Uwe 25-Mrz-16 declined 2016-01-26 [Uwe] declined, will not be implementd

Req004
Developer requirement, complexity and

priority to be defined (tbd)
developer Jim 27-Jan-16 tbd tbd Uwe 29-Apr-16 open

2016-01-26 [Uwe] Meeting planned to discuss

proceeding

Priority

high

low

medium

tbd

Identification of requirements

Requirements list

11.02.2016 Uwe Gühl - Requirements Engineering 35

• Status:

– open
No activities yet

– declined
No implementation

– in progress

– done
Additional field “result” to be considered

Requirement description Quantification Implementation
Id Requirement Stakeholder

role

Stakeholder

contact

person

Initial date Complexity Priority Responsible Due date Status Actions

Req001
Example of a requirement, low complex,

with high priority. Already in progress
operation Ben 27-Jan-16 medium high Uwe 27-Jan-16

in

progress

2016-01-26 [Uwe] Approved, implementation in

progress

Req002
Business requirement, low priority

business Dek 27-Jan-16 low low Uwe 26-Feb-16 done 2016-01-26 [Uwe] approved and delivered.

Req003
End user requirement, high complex

end user John 27-Jan-16 high medium Uwe 25-Mrz-16 declined 2016-01-26 [Uwe] declined, will not be implementd

Req004
Developer requirement, complexity and

priority to be defined (tbd)
developer Jim 27-Jan-16 tbd tbd Uwe 29-Apr-16 open

2016-01-26 [Uwe] Meeting planned to discuss

proceeding

Status

in

progress

done

declined

open

Design of requirements

Motivation

• Assumption: Requirements / Ideas are found

– as text fragments

– as minutes of workshops

– as pictures of story cards collected on a wall

• Now look into it.

Goal: Writing good requirements

How to: Using guidelines

11.02.2016 Uwe Gühl - Requirements Engineering 36

Design of requirements

Good requirements:

• Correct: They have to say the right things.

• Consistent: They can’t contradict each other.

• Unambiguous: Each must have one interpretation.

• Complete: They cover all the important stuff.

• Relevant: Each must meet a customer need.

• Testable: There must be a way to
check if they are met.

• Traceable: There must be a way to
determine their origin.

11.02.2016 Uwe Gühl - Requirements Engineering 37

Design of requirements

Prioritization
• What are the most crucial and most risky

requirements?
– To be developed first

– To be tested first

• Prioritization of requirements
– High priority: Must – to be realized in the

next iteration, e.g. product release.

– Medium priority: Should – necessary.

– Low priority: Could – Nice to have
if there is enough time.

• Important for scope management

11.02.2016 Uwe Gühl - Requirements Engineering 38

Design of requirements

• KISS – Keep it simple and smart

– Keep sentences and paragraphs short.

– Use the active voice.

– Use proper grammar, spelling, and punctuation.

– Use terms consistently and define them in a
glossary or data dictionary.

11.02.2016 Uwe Gühl - Requirements Engineering 39

Quality

measure
Glossary to speak “the same language”.

There should be only one common glossary.

There should be one person responsible.

Source: [Wie99]

Design of requirements

• There should be no gaps, no inconsistencies

• Important: Acceptance criteria
Excerpt (out of agile software development):
“Definition of done” is an agreement to decide,
when a realization of a user story is “done”,
means could be accepted by the customer.
E.g. presentation successful, automated test cases
passed.

• Use of concrete examples – the more realistic,
the better => Basis for test cases

• To see if a requirement statement is sufficiently well
defined, read it from the developer’s perspective.

11.02.2016 Uwe Gühl - Requirements Engineering 40

Design of requirements

• “Right” granularity

– A helpful granularity guideline is
to write individually testable requirements
with a small number of related tests

– Watch out for multiple requirements that have
been aggregated into a single statement.
"and" / "or" in a requirement
� Several requirements might have been
combined.

11.02.2016 Uwe Gühl - Requirements Engineering 41

Source: [Wie99]

Design of requirements

• Consistent level of detail

– Not too detailed
For example, "A valid color code shall be R for
red" and "A valid color code shall be G for green"
might be split out as separate requirements.

– Not too general
For example, "The product shall respond to
editing directives entered by voice"
describes an entire subsystem,
not a single functional requirement.

11.02.2016 Uwe Gühl - Requirements Engineering 42

Source: [Wie99]

Design of requirements

• Once and only once

– Avoid stating requirements redundantly in the
specification.

– Reason: If there are multiple instances of
requirements:

� Difficult maintenance of the requirements

specification document

� Source for inconsistencies, if not all redundant

requirements get updated at the same time

11.02.2016 Uwe Gühl - Requirements Engineering 43

Source: [Wie99]

Design of requirements

Example: User stories

• User Stories are high-level requirements

• Large User Stories are known as Epics (compare to
Business Scenario) – typically too big to be
implemented in an iteration

• User Stories are often written on index cards or
sticky notes, and stored on walls.

• They shift the focus from writing
about features to discussing them.

• User Story is something like
a promise to talk.

11.02.2016 Uwe Gühl - Requirements Engineering 44

Design of requirements

Example: User stories

• Well written user stories should follow the INVEST
model [Wak03]

– I ndependent no overlap, no dependencies

– N egotiable captures the essence, not details

– V aluable a specified value for the customer

– E stimable to help in planning and prioritization

– S mall should be conducted in a sprint

– T estable more effective, if tests were written

before implementation

11.02.2016 Uwe Gühl - Requirements Engineering 45

Review of requirements

11.02.2016 Uwe Gühl - Requirements Engineering 46

Requirements

engineer

Developer

Test

engineer

--

-----.-----------

--

--

Require
ments

--

Review of requirements

11.02.2016 Uwe Gühl - Requirements Engineering 47

Requirements

engineer

Developer

Test

engineer

--

-----.-----------

--

--

Require
ments

--

Findings

Findings

Review of requirements

Try to be active in reviewing requirements.

• Problems?

Ask questions

• Proposals?

Propose better statements

11.02.2016 Uwe Gühl - Requirements Engineering 48

Source: [Wie99]

Review of requirements

Example 1

"The product shall provide status messages at

regular intervals not less than every 60 seconds."

• Problems?

• Proposals?

11.02.2016 Uwe Gühl - Requirements Engineering 49

Source: [Wie99]

Review of requirements

Example 1
"The product shall provide status messages at regular intervals
not less than every 60 seconds."

• Problems?
1. What are the status messages and how are they supposed to

be displayed to the user?
2. What part of "the product" are we talking about?
3. Is the interval between status messages really supposed to be

at least 60 seconds, so showing a new message every 10
years is okay?

4. Perhaps the intent is to have no more than 60 seconds elapse
between messages; would 1 millisecond be too short?

5. The word "every" just confuses the issue.
6. Verifiable: As a result of these problems, the requirement is not

verifiable.

11.02.2016 Uwe Gühl - Requirements Engineering 50

Source: [Wie99]

Review of requirements

Example 1
"The product shall provide status messages at regular
intervals not less than every 60 seconds."

• Proposals?
1. Status Messages.

1.1. The Background Task Manager shall display status
messages in a designated area of the user interface at
intervals of 60 plus or minus 10 seconds.
1.2. If background task processing is progressing
normally, the percentage of the background task
processing that has been completed shall be displayed.
1.3. A message shall be displayed when the background
task is completed.
1.4. An error message shall be displayed if the
background task has stalled.

11.02.2016 Uwe Gühl - Requirements Engineering 51

Source: [Wie99]

Proposal

Review of requirements

Example 1

"The product shall provide status messages at

regular intervals not less than every 60 seconds."

• Proposal – Assessment

– Splitting into multiple requirements

� Each will require separate test cases

� Each will be separately traceable.

– If several requirements are strung together in a
paragraph, it is easy to overlook one during
construction or testing.

11.02.2016 Uwe Gühl - Requirements Engineering 52

Source: [Wie99]

Review of requirements

Example 2

"The HTML Parser shall produce an HTML markup

error report which allows quick resolution of errors

when used by HTML novices"

• Problems?

• Proposals?

11.02.2016 Uwe Gühl - Requirements Engineering 53

Source: [Wie99]

Review of requirements

Example 2
"The HTML Parser shall produce an HTML markup
error report which allows quick resolution of errors
when used by HTML novices"

• Problems?

1. What goes into the error report?

2. What is "quick"?

3. How to find someone who calls herself an
HTML novice and see if she can resolve errors
quickly enough using the report?

11.02.2016 Uwe Gühl - Requirements Engineering 54

Source: [Wie99]

Review of requirements

Example 2
"The HTML Parser shall produce an HTML markup
error report which allows quick resolution of errors
when used by HTML novices"

• Proposal

– "The HTML Parser shall produce an error report
that contains the line number and text of any
HTML errors found in the parsed file and a
description of each error found.

– If no errors are found, the error report shall not be
produced."

11.02.2016 Uwe Gühl - Requirements Engineering 55

Source: [Wie99]

Proposal

Review of requirements

Example 2
"The HTML Parser shall produce an HTML markup
error report which allows quick resolution of errors
when used by HTML novices"

• Proposal – Assessment

– Defined: What needs to go into the error report

– Benefit: Designer decides what the report should
look like

– Plus: An exception condition is defined:
If there aren’t any errors, don’t generate a report

11.02.2016 Uwe Gühl - Requirements Engineering 56

Source: [Wie99]

Changing requirements

• Requirements are changing [Sch01]

– Small projects: Up to 25% of requirements are
changing

– Large projects: Up to 50% of requirements are
changing

• Possible reasons:

– Stakeholder does not like delivered solution.

– Market requests changed.

11.02.2016 Uwe Gühl - Requirements Engineering 57

Changing requirements

• Regular look at the requirements as they are

living!

– Prioritization
Focus on the most important requirements and
on the requirements to be implemented next.

– Enforce communication
Requirements Engineer - Developer - Tester

– Regular milestones, short development cycles
Regular feedback concerning implementation of
requirements.

11.02.2016 Uwe Gühl - Requirements Engineering 58

Changing requirements

• Required: Positive attitude concerning change:

– Changes are okay – better to change instead of
implementing something “wrong”!

• Change management process
Clear rules have to be defined, agreed and
followed

– Classical: Change management including a
change control board (CCB)

– Agile: Continuous update of backlog and
considering changed requirements in sprint
planning

11.02.2016 Uwe Gühl - Requirements Engineering 59

Changing requirements

• Ideas as discussed before result in

“Agile software development”; example Scrum:

– Basics: User Stories as “atomic requirements”.

– Collection of User Stories as basic wish list what
makes the product great.

– Regular planning: Agreement, which user stories
to be implemented in next sprint
� Following prioritization by customer.

– Regular review: Acceptance of delivered solution.

11.02.2016 Uwe Gühl - Requirements Engineering 60

Changing requirements

• Ideas as discussed before result in

“Agile software development”; example Scrum:

11.02.2016 Uwe Gühl - Requirements Engineering 61

Image source: https://commons.wikimedia.org/wiki/File:Scrum_process.svg

Summary

• Requirements Engineering
… to get better projects
… to face main problems of IT projects

• First activity: Identification of requirements

– Business Scenarios

� to focus on business related requirements

� to find Use Cases with top down approach

� to implement the most important requirements first.

– Non-Functional Requirements

� to be taken serious

� to be identified e.g. with ISO / IEC 9126 as check list.

11.02.2016 Uwe Gühl - Requirements Engineering 62

Summary

• There are a lot of techniques and ideas,

how to identify, to write, and to update

requirements.

• A constructive, willing to learn organization is

extremely helpful for successful requirements

engineering.

11.02.2016 Uwe Gühl - Requirements Engineering 63

Want to learn more?

• Professional organizations
– International Requirements Engineering Board [IRE16]

� offer a certification program to get
“Certified Professional for Requirements Engineering”.

• Books
– Klaus Pohl, Chris Rupp: Requirements Engineering

Fundamentals, 1st edition, Rocky Nook Inc., 2011
– Karl E. Wiegers: More About Software Requirements: Thorny

Issues and Practical Advice, Microsoft Press, 2005
– Ian Alexander, Ljerka Beus-Dukic: Discovering Requirements –

How to Specify Products and Services, Wiley, 2009

• Example for a specification: “The project Aardvark Spec” @
http://www.joelonsoftware.com/articles/AardvarkSpec.html

11.02.2016 Uwe Gühl - Requirements Engineering 64

Sources

• [ADA15] Application Developers Alliance, Developer Insights Report, August 2015,
http://www.appdevelopersalliance.org/developer-insights-report-2015

• [AG16] Daud Alam, Uwe Gühl: Projektmanagement für die Praxis, Springer, 2016 (in
German)

• [Coh11] Mike Cohn: User Stories, Epics and Themes, October 24, 2011,
http://www.mountaingoatsoftware.com/blog/stories-epics-and-themes

• [Gli14] Martin Glinz, A Glossary of Requirements Engineering Terminology, Version 1.6,
May 2014, https://www.ireb.org/en/downloads/

• [HW15] Shane Hastie, Stéphane Wojewoda: Standish Group 2015 Chaos Report - Q&A
with Jennifer Lynch on Oct 04, 2015, http://www.infoq.com/articles/standish-chaos-2015

• [IRE16] International Requirements Engineering Board, 2016, https://www.ireb.org/

• [IST15] International Software Testing Qualifications Board (ISTQB): Standard Glossary of
Terms Used in Software Testing, Version 3.01, March 26th, 2015,
http://www.istqb.org/downloads/glossary.html

• [Mod16] MODERNanalyst.com: The Requirements Engineer Role;
http://www.modernanalyst.com/TheProfession/Roles/RequirementsEngineer/tabid/188/Def
ault.aspx

• [Mou16] Mountain Goat: User Stories; An Agile RequirementsApproach, 2016,
http://www.mountaingoatsoftware.com/agile/user-stories

11.02.2016 Uwe Gühl - Requirements Engineering 65

Sources

• [PR11], Klaus Pohl, Chris Rupp: Basiswissen Requirements Engineering. Aus- und
Weiterbildung zum ”Certified Professional for Requirements Engineering”, 3rd edition,
2011, dpunkt.verlag

• [Ric05] Randall W. Rice: STBC The Economics of Testing, 2005,
http://www.riceconsulting.com/public_pdf/STBC-WM.pdf

• [Sch01] Bruno Schienmann: Kontinuierliches Anforderungsmanagement, Prozesse –
Techniken – Werkzeuge, Addison-Wesley, 2001

• [SG14] The Standish Group: Report Chaos, 2014,
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

• [Wak03] Bill Wake: INVEST in Good Stories, and SMART Tasks, 2003,
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

• [Wie99] Karl E. Wiegers: Writing Quality Requirements, 1999,
http://processimpact.com/articles/qualreqs.html

• [Wik16] Wikipedia: ISO/IEC 9126, 2016, https://en.wikipedia.org/wiki/ISO/IEC_9126

• [Wik16a] Wikipedia: Use Case, 2016, https://en.wikipedia.org/wiki/Use_case

• [Wik16b] Wikipedia: Chaos-Studie, 2016, https://de.wikipedia.org/wiki/Chaos-Studie

• [Win99] Mario Winter: Qualitätssicherung für objektorientierte Software:
Anforderungsermittlung und Test gegen die Anforderungsspezifikation, 1999,
http://deposit.fernuni-hagen.de/2527/1/dissWinter.pdf

11.02.2016 Uwe Gühl - Requirements Engineering 66

Backup

11.02.2016 Uwe Gühl - Requirements Engineering 67

ISO/IEC 9126 Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 68

2 Reliability

1 Functionality

3 Usability

4 Efficiency

6 Portability

5 Maintainability

1.1.Suitability
Does the software the specified tasks?

1.2.Accuracy

E.g. the needed precision of results

1.3.Interoperability
Cooperates with specified systems

1.4.Compliance

...with conditions / regulations

1.5.Security

No unauthorized access possible

ISO/IEC 9126 Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 69

2 Reliability

1 Functionality

3 Usability

4 Efficiency

6 Portability

5 Maintainability

2.1.Maturity

concerns frequency of failure of the
software.

2.2.Fault Tolerance

Ability to withstand (and recover) from
failure like unexpected inputs.

2.3.Recoverability

Ability to recover a failed system including
data / network

ISO/IEC 9126 Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 70

2 Reliability

1 Functionality

3 Usability

4 Efficiency

6 Portability

5 Maintainability

3.1.Learnability
Learning effort for different users

3.2.Understandability
How easy could systems functions be

understood?

3.3.Operability:
To keep a system in in a safe and

reliable functioning condition

ISO/IEC 9126 Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 71

2 Reliability

1 Functionality

3 Usability

4 Efficiency

6 Portability

5 Maintainability

4.1 Time Behaviour Response
time, processing time, throughput

4.2 Resource Behaviour: Usage of
RAM, disk space, network, energy

ISO/IEC 9126 Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 72

2 Reliability

1 Functionality

3 Usability

4 Efficiency

6 Portability

5 Maintainability

5.1.Stability:
Capability to avoid unexpected effects

from modifications of the system

5.2.Analyzability:
Ability to identify the root cause of a

failure, e.g. with system logs

5.3.Changeability:
Effort to do changes at the system

5.4.Testability:
Effort needed to test a system

change.

ISO/IEC 9126 Quality Model

11.02.2016 Uwe Gühl - Requirements Engineering 73

2 Reliability

1 Functionality

3 Usability

4 Efficiency

5 Maintainability

6 Portability
6.1.Installability:

Effort to install a system in a specific
environment

6.2.Replaceability:
How easy is it to exchange a given

software component within a
specified environment (compatibility

of data)

6.3.Adaptability:
Ability of the system to change to new
specifications or to move to another

operating environment

