
Lessons Learned
V 1.0

Uwe Gühl

Winter 2013 / 2014

Software Testing

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 2

Contents

● Introduction

● Measures to increase IT quality

– Requirements – non functional requirements

– Reviews

– Communication

– Prioritization

● Testing and Quality

– Test Report

– Test Plan

● Want to learn more?

● Sources / More

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 3

Introduction

(Fatal) software defects
● 1996 a prototype of the Ariane 5 rocket of the

European Space Agency was destroyed one
minute after the start.

● Reason:
The code of the Ariane 4 was used.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 4

Introduction

(Fatal) software defects
● In 1982 there was a crash of a Lockheed F-117A Night

Hawk during takeoff.

● Reason:
The fly-by-wire system
had been hooked up
incorrectly
("yaw rudder"
was used instead of
"pitch elevator"
and visa versa)

(Image source: NASA,
http://en.wikipedia.org/wiki/File:Rollpitchyawplain.png
Public domain)

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 5

Result of an analysis of more than 9000 IT projects
(Standish Group, Chaos Report 2013):

Introduction

* challenged means overrun in
budget and / or time

*

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 6

Why do projects fail? [Sta94]
1. Incomplete requirements 13.1%
2. Lack of user involvement 12.4%
3. Lack of resources 10.6%
4. Unrealistic expectations 9.9%
5. Lack of executive support 9.3%
6. Changing requirements and specifications 8.7%
7. Lack of planning 8.1%
8. System no longer needed 7.5%
9. Lack of IT Management 6.2%
10.Technology Illiteracy 4.3%

Other 9.9%

Introduction

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 7

Success factors for IT projects: [Sta94]
1. User Involvement 15.9%
2. Executive Support 13.9%
3. Clear Statement of Requirements 13.0%
4. Proper Planning 9.6%
5. Realistic Expectations 8.2%
6. Smaller Project Milestones 7.7%
7. Competent Staff 7.2%
8. Ownership 5.3%
9. Clear Vision & Objectives 2.9%
10. Hard-Working, Focused Staff 2.4%
Other 13.9%

Introduction

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 8

Introduction

What is the source of defects? [Ric05]

 Requirements play a central role in IT projects

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 9

Introduction

● Prevention, ... not cure
● The earlier a defect

is detected,
the cheaper
is the correction

● More cheaper are defects,
which don't occur at all

● Idea: Increasing quality
„from scratch“ with corresponding measures:
E. g. early reviews of requirements, code, ...

Costs of defect fixing

Phase Relative Cost
to Correct

Definition 1 $
High-Level Design 2 $
Low-Level Design 5 $
Code 10 $
Unit Test 15 $
Integration Test 22 $
System Test 50 $
Post-Delivery 100 $

Based on [Dus03]

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 10

Measures to increase IT quality

So, what to do ?

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 11

Requirements

● Requirements and Testing work together
● Requirements are basic for testing
● Testers have to identify the most crucial and

most risky requirements
● Gaps in specifications have to be clarified
● Activities to be done, if requirements are

missing or not clear, especially non-functional
requirements

● Purpose of testing: Focus on high risk areas

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 12

Requirements

Test Conditions*Test Conditions*

Test CasesTest Cases

* Test condition = An item or event of a component or system that could
be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [ISTQB-GWP12].

General
testing

objectives

Specification-
based

techniques

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 13

RisksRisks
Requirements

Requirements
specification

Requirements
specification User Story

As a Scheduler I want
to update a given

appointment so that I
could add another

date.

User Story
As a Scheduler I want

to update a given
appointment so that I

could add another
date.

Use CasesUse Cases

Functional
specification

Functional
specification

Test Conditions*Test Conditions*

Test CasesTest Cases

Older version
User manual

Older version
User manual

Interviews
with end
users,
potential
customers

Interviews
with end
users,
potential
customers

Older version
Bug reports

Older version
Bug reports

undocumented

Online forums
* Test condition = An item or event of a component or system that could

be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [ISTQB-GWP12].

Specification-
based

techniques

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 14

Requirements

● How to identify Requirements / Risks

– Interviews with stakeholders
E.g. Sales, end user, project manager, ...

– Definition of Business Scenarios
… to identify business needs
… to define use cases (Top down approach)
… to prioritize testing activities

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 15

Requirements

Top-Down Approach: Identifying requirements
(here: Use Cases) out of Business Scenarios

Business Scenario 1

Business Scenario 2

Use Cases out of Business Scenarios

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 16

Requirements

● Requirements acceptance criteria
– Helpful: Concrete examples.

– Out of it: Define test cases to be passed.
● Excerpt (out of agile software development):

 “Definition of done” is an agreement to decide,
when a realization of a requirement could be accepted
by the customer.
E.g. presentation successful, automated test cases
passed.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 17

Requirements

● Prioritization of requirements
– High priority: Must – to be realized in the

next iteration, e.g. product
release.

– Medium priority: Should – necessary.

– Low priority: Could – Nice to have
if there is enough time.

● High risk areas and high prioritized
requirements result in corresponding prioritized
test cases.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 18

Non-Functional Requirements
Motivation

● Unknown Non-Funtional Requirements are a
big risk in IT projects, if so called
“self evident requirements” are not fulfilled
(security, performance, load).

● Specification documents often leave the area
“Non-Functional Requirements” empty or
imprecise (“fast”, “easy to use”, “secure”)
→ IT Architecture cannot follow conditions.
→ No proper test planning.

● Proposal: Proposal: Early identification of non-functional
requirements!

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 19

Non-Functional Requirements
ISO/IEC 9126 Quality Model

● ISO/IEC 9126 Software engineering – Product
quality [Wik14]
– was an international standard for the evaluation of

software quality – focusing on the product.
– tries to develop a common understanding of the

project's objectives and goals.
– applies to characteristics to evaluate in a specific

degree, how much of the agreements got fulfilled

● Hint: Since 2011 there is a successor available:
ISO 25010-2011 has eight product quality characteristics
(in contrast to ISO 9126's six), and 39 sub-characteristics

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 20

Non-Functional Requirements
ISO/IEC 9126 Quality Model

1 Functionality

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 21

Non-Functional Requirements
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality

1.1.Suitability
Does the software the specified

tasks?

1.2.Accuracy
E.g. the needed precision of results

1.3.Interoperability
Cooperates with specified systems

1.4.Compliance
...with conditions / regulations

1.5.Security
No unauthorized access possible

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 22

Non-Functional Requirements
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality
2.1.Maturity

concerns frequency of failure of the
software.

2.2.Fault Tolerance
Ability to withstand (and recover) from

failure like unexpected inputs.

2.3.Recoverability
Ability to recover a failed system

including data / network

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 23

Non-Functional Requirements
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality

3.1.Learnability
Learning effort for different users

3.2.Understandability
How easy could systems functions be

understood?

3.3.Operability:
To keep a system in in a safe and

reliable functioning condition

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 24

Non-Functional Requirements
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality4.1.Time Behaviour
Response time, processing time,

throughput

4.2.Resource Behaviour:
Usage of RAM, disk space, network,

energy

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 25

Non-Functional Requirements
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality5.1.Stability:
Capability to avoid unexpected effects

from modifications of the system

5.2.Analyzability:
Ability to identify the root cause of a

failure, e.g. with system logs

5.3.Changeability:
Effort to do changes at the system

5.4.Testability:
Effort needed to test a system

change.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 26

Non-Functional Requirements
ISO/IEC 9126 Quality Model

2 Reliability

3 Usability

4 Efficiency

5 Maintainability

6 Portability

1 Functionality

6.1.Installability:
Effort to install a system in a specific

environment

6.2.Replaceability:
How easy is it to exchange a given

software component within a
specified environment (compatibility

of data)

6.3.Adaptability:
Ability of the system to change to new
specifications or to move to another

operating environment

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 27

Non-Functional Requirements
Proceeding

Proposal: Performing a work shop

1.Presentation of current status of software
project (status of requirements, general set-up,
system interfaces, architecture)

2.Start: Presentation and explanation of non-
functional requirements

3.Prio: Prioritization of characteristic / sub-
characteristic criteria

4.Tasks: Definition of concrete quality /
acceptance criteria and next activities

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 28

Non-Functional Requirements
Proceeding – Example (Start)

High priority Medium priority Low priority

1.2. Accuracy

6.3. Replaceability

5.4. Testability

4.1. Time Behaviour

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 29

Non-Functional Requirements
Proceeding – Example (Prio)

High priority Medium priority Low priority

1.2. Accuracy



6.3. Replaceability

5.4. Testability



4.1. Time Behaviour



Prioritization done by workshop participants, IT (red dots), Business (blue dots)

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 30

Non-Functional Requirements
Proceeding – Example (Tasks)

● Collection of requirements, acceptance criteria,
tasks to be executed, etc.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 31

Reviews

● Reviews help to
– clarify requirements,

– reduce project costs in detecting defects early,

– gain understanding,

– educate testers and new team members.

● Different types of reviews possible like
– Informal Review

– Walkthrough

– Technical Review

– Inspection

Could be performed as a
“Peer Review” by

colleagues of the producer
of the product

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 32

Reviews

Proceeding (1/2)

Requirements
Engineer

Tester

Developer

Require-
ments

Review

Another
Developer

Code

Review

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 33

Reviews

Proceeding (2/2)

Requirements
Engineer

Tester

Test
Cases

Review

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 34

Reviews

Cost-value ratio
● Reviews cost about 10 to 15 % of development

budget.
● Reviews save costs [Bus90] [FLS00] [GG96]:

– About 14% up to 25% savings in IT projects possible
(additional costs of reviews already considered).

– It's possible to find up to 70% of defects in a
document.

– Reduction of defect costs up to 75%.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 35

Reviews

● „Peer reviews“ – capable experts review the
work
Use: will detect about 31 % up to 93 % of all
defects, average: 60 %

● “Perspective review” – evaluators use the work
for own tasks (For example specification:
Generation of test cases, or a manual out of it)
Use: 35 % more defects are detected
compared to non-purposeful reviews

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 36

Reviews

Be active in reviewing requirements.

● Problems?
Ask questions

● Proposals!
Propose better statements

[Wie99]

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 37

Reviews

Example: "The HTML Parser shall produce an
HTML markup error report which allows quick
resolution of errors when used by HTML novices"
● Incomplete

What goes into the error report?

● Proposal
"The HTML Parser shall produce an error report that
contains the line number and text of any HTML errors
found in the parsed file and a description of each error
found.
If no errors are found, the error report shall not be
produced."

[Wie99]

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 38

Communication

● Test planning
– To identify scope:

Customer, project sponsor, project manager

– To identify risks:
Test team, developer, sales, architect, end user,
people related to similar projects, investigation

● Test reporting:
… to all project stakeholders

● Enforce Communication
Requirements Engineer  Developer  Tester

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 39

Prioritization

Task:
● Testing of a simple program with three integers, up to

16 Bit

● Every combination should be tested

● Duration with assumption 100.000 tests / second

Solution:
● 216 * 216 * 216 = 248 combinations

= 281.474.976.710.656 combinations

● Duration: About 90 years

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 40

Prioritization

● So: You can't test everything
● What to do?

– Risk based testing
==> Identify risks – remember requirements

– Prioritization
“Prioritise tests so that, when ever you stop testing,
you have done the best testing in the time
available” (ISEB testing foundation course material
2003)

– Always focus on the most important and most
risky requirements

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 41

● A small number of modules usually contains
most of the defects.

● Defect clustering is based on the
Pareto principle – the 80-20 rule.

Approximately 80 per cent of the problems are
caused by 20 per cent of the modules [Jaw13].

of defects

Module
Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod7

Prioritization

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 42

Pair programming

Quality is rising when doing pair programming
[TDD05]
TDD research studies in industry

„… showed that programmers using TDD produced code that passed
18 percent to 50 percent more external test cases than code produced
by corresponding control groups“

with minimal impact to productivity

… more

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 43

… more

● Continuous Integration
… to detect integration issues as soon as possible.
Consider automated regression test after every major
integration.

● Lessons learned

– Use your and your fellows experience:
People know already – ask and transfer

– Use experience out of project team:
Regular lessons learned (workshops) with
measures

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 44

… more

● Checklists

– Cheap and efficient

– Challenge: “Right” checklist
Idea: Common preparation

– Good to use for milestones / quality gates

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 45

Testing and Quality

QM

QA QC

Quality Management

Quality Assurance Quality Control

Are we building the right product?
Detection of faults

by inspecting and testing the product

Are we building the product right?
Prevention of faults

by inspecting and testing the process

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 46

QA QC

Quality Assurance Quality Control

● Relationship QA – QC
As QA inspects the processes, it investigates in test
processes as well, test process improvements e. g.
with TPI [Sog14] or TMMI [TMMI14]

Examples for test processes and test work products
● Defect Management Process
● Test Case Creation Process

● Test Cases
● Test Reports

Testing and Quality

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 47

Testing and Quality

Test
planning

and
control

Test
analysis

and
design

Test
implemen-

tation
and

execution

Evaluating
exit

criteria
and

reporting

Test
closure

activities

Fundamental Test Process

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 48

Testing and Quality

V-Model

01-1 - Unit-Test

01-2 - Integrations-Test

02-1 – Functional Test

02-2 – System Integration Test

02-3 – NFR Test

03-1 – User Acceptance Test

04-2 – Process Pilot

04-1 – Operation

Implementation

Software Design

Use Cases

Business Use Cases

Non functional Requirements

(GUI-) Requirements

Business processes in company

Company wide operation

S
o

ft
w

a
re

d
e

ve
lo

p
er

Te
st

e
r

01-3 –
Software
delivery

03-2 –
Software

acceptance

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 49

Testing and Quality
Test Report

● The test report
– is the working result of the test team

– is the business card of the test team

● Contents is based on test plan: Compare what
has been planned and what has been achieved.
– Test coverage

– Defect situation

– Quality statements

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 50

Testing and Quality
Test Report

● Basic information:
– Work done

Test preparation, test execution, plan/actual
comparison, defect situation

– Work not achieved / delayed
Explanation of issues, consequences, measures.

– Work planned
What to do until next reporting cycle

– Urgent discussion points
Issues, risks

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 51

Testing and Quality
Test Report

Test execution by area

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 52

Testing and Quality
Test Report

Test execution progress

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 53

Testing and Quality
Test Report

Defect overview by severity

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 54

Testing and Quality
Test Plan

● A (test) plan is always wrong,
● Worst than a wrong test plan: A dead test plan
● Goal of test planning is not the test plan but

doing test planning
● Goal of test plan: Understand what to test how

intense.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 55

Testing and Quality
Test Plan

● What is the effort for testing in a software
project? What do I have to calculate?

● Approach [Whi11] [Whi11a]: Focus on
– Attributes such as fast, usable, secure, etc.

– Components like classes, module names and
features of the application.

– Capabilities – verbs that describe user actions and
activities.

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 56

Testing and Quality
Test Plan

● Basic estimations
– How many test cases?

– Time for creation / review / overworking of one test
case

– Time for execution of one test case

– How many defects do we expect?

– Time to manage one defect

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 57

Want to learn more?

● Get educated!

● Professional organizations, e.g.

– International Software Testing Qualifications Board,
http://www.istqb.org; Certified Testers:

➢ Foundation Level
➢ Advanced Level
➢ Expert Level

– Americas Requirements Engineering Association
[ARA14]

– International Requirements Engineering Board,
[IREB14]; “Certified Professional for Requirements
Engineering”

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 58

Want to learn more?

● Books

– Lisa Crispin, Janet Gregory: Agile Testing: A Practical Guide for
Testers and Agile Teams, Addison-Wesley Signature, 2008

– Cem Kaner, Jack Falk, Hung Quoc Nguyen: Testing Computer
Software, Wiley Computer Publising, 1999

– Cem Kaner, James Bach, Bret Pettichord: Lessons Learned in
Software Testing, Wiley Computer Publising, 2002

– Klaus Pohl, Chris Rupp: Requirements Engineering
Fundamentals, 1st edition, Rocky Nook Inc., 2011

– Andreas Spillner, Tilo Linz, Hans Schaefer: Software Testing
Foundations: A Study Guide for the Certified Tester Exam, 3rd
Edition, 2011

– James A. Whittaker, Jason Arbon, Jeff Carollo: How Google Tests
Software, Addison-Wesley Professional, 2012

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 59

Sources (1/2)

[ARA14] Americas Requirements Engineering Association, http://a-re-a.org/

[Bus90] Bush, M.: Software Quality: The use of formal inspections at the Jet
Propulsion Laboratory. In: Proc. 12th ICSE, p. 196-199, IEEE 1990

[Dus03] Elfriede Dustin: Effective Software Testing - 50 Specific Ways to
Improve Your Testing, Pearson Education, Inc. 2003

[FLS00] Frühauf, K.; Ludewig, J,; Sandmayr, H.: Software-Prüfung: eine Fibel.
vdf, Verlag der Fachvereine, Zürich, 4. Aufl. 2000

[GG96] Gilb, T.; Graham, D.: Software Inspections. Addison-Wesley, 1996

[ISTQB-GWP12] Glossary Working Party of International Software Testing
Qualifications Board: Standard glossary of terms used in Software Testing,
Version 2.2, 2012, http://www.istqb.org/downloads/glossary.html

[Jaw13] Ranjeet Jawale: Defect clustering & Pesticide paradox, 2013,
http://www.softwaretestingclub.com/profiles/blogs/defect-clustering-pesticide-
paradox

[IREB14] International Requirements Engineering Board, 2014,
http://www.ireb.org/

Winter 2013 / 2014 Uwe Gühl, Lessons Learned Software Testing 60

Sources (2/2)

[Ric05] Randall W. Rice: STBC The Economics of Testing, 2005,
http://www.riceconsulting.com/public_pdf/STBC-WM.pdf

[Sta94] The Standish Group, Standish Group survey 1994

[TDD05] Test-Driven Development: Concepts, Taxonomy, and Future Direction,
IEEE Sep 2005

[Whi11] James Whittaker: EuroSTAR Software Testing Video: Ten Minute Test
Plan with James Whittaker, 2011, http://www.youtube.com/watch?
v=QEu3wmgTLqo

[Whi11a] James Whittaker: The 10 Minute Test Plan, 2011 ,
http://googletesting.blogspot.com/2011/09/10-minute-test-plan.html

[Wie99] Karl E. Wiegers: Writing Quality Requirements, 1999,
http://processimpact.com/articles/qualreqs.html

[Wik14] Wikipedia: ISO/IEC 9126, 2014,
http://en.wikipedia.org/wiki/ISO/IEC_9126

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60

