
Success factor
Software Testing

Uwe Gühl

Winter 2015 / 2016

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 2

Contents

● Introduction

● Software testing: What are success factors?

1) Risk Based Testing

2) Requirements

3) Prioritization

4) Communication

5) Early Testing

6) Reviews

7) Test automation

8) Test Know-how

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 3

Introduction

(Fatal) software defects

● 1996 a prototype of the Ariane 5 rocket of the
European Space Agency was destroyed one
minute after the start.

● Reason:
The code of the Ariane 4 was used.

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 4

Introduction

(Fatal) software defects

● In 1982 there was a crash of a Lockheed F-117A Night
Hawk during take off

● Reason:
The fly-by-wire system
had been hooked up
incorrectly
("yaw rudder"
was used instead of
"pitch elevator"
and visa versa)

(Image source: NASA,
http://en.wikipedia.org/wiki/File:Rollpitchyawplain.png
Public domain)

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 5

Introduction

(Fatal) software defects

● 2012 Knight Capital lost about $440 million in 45
minutes

● Reason:
Because of a defect in untested released
software the program rapidly bought and sold
millions of shares accidentally – resulting in a big
loss [Wik16]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 6

Result of an analysis of the Standish Group, Chaos
Report 2015 [HW15]
● Failed

The project is cancelled at some point during the development
cycle.

● Challenged
Cost or time overruns or didn’t fully meet the user’s needs

● Successful
On time, on budget with a satisfactory result

Introduction

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 7

Result of an analysis of more than 9000 IT projects
(Standish Group, Chaos Report 2015) [HW15]

Introduction

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 8

Fundamental test process [IST16]

Introduction

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 9

Introduction

Figure 8.3. Classical model of optimum quality costs.
From Jurans Quality Control Handbook, 4th edition. J.M. Juran, editor.

Copyright © 1988, McGraw-Hill

Im
ag

e
so

ur
ce

:
ht

tp
:/

/q
ua

lit
ya

m
er

ic
a.

co
m

/im
ag

es
/f

ig
ur

e_
vi

39
_q

ua
lit

yc
os

ts
.jp

g

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 10

Introduction

Effort of software testing as part of software development
● The cost of testing is up 40 to 60 percent of the total project

costs, depending on the required level of quality [SJ06]

● 1979, and in 2012, in a typical programming project
approximately 50 percent of the elapsed time and more than 50
percent of the total cost were expended in testing the program or
system being developed [MSB12]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 11

Introduction

● General: Preventing defects is more efficient than fixing
Prevention, ... not cure

● The earlier a defect is detected,
the cheaper is the correction

● Cheapest are defects,
that don't occur at all

● To be considered:
You can't test quality into the product;
it must be built in

● Idea: Increasing quality „from scratch“
with corresponding measures:
E. g. early reviews of requirements, code, ...

Costs of defect fixing

Phase Relative Cost
to Correct

Definition 1 $
High-Level Design 2 $
Low-Level Design 5 $
Code 10 $
Unit Test 15 $
Integration Test 22 $
System Test 50 $
Post-Delivery 100 $

Based on [Dus03]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 12

Risk Based Testing

Definitions by [IST15]

● Project risk
● A risk related to management and control of the (test)

project, e.g. lack of staffing, strict deadlines, changing
requirements, etc.

● Product Risks
● A risk directly related to the test object.

● Risk based testing
● An approach to testing to reduce the level of product risks and

inform stakeholders of their status, starting in the initial stages
of a project. It involves the identification of product risks and
the use of risk levels to guide the test process.

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 13

Risk Based Testing

● Approach based on product risks
What is the worst that can happen?

● Collection and regular update of all possible product
risks

● The higher the risk the more corresponding tests to be
prepared and executed

● Purpose of testing: Focus on high risk areas,
especially on corresponding requirements

● Focus on concrete examples

● Simple summary: No risk, no test

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 14

Risk Based Testing
Risks

R1

R2

R3

R5

Test
scenarios

TS2

TS1

TS4

TS5

TS6

TS3

R4

Risks (R1, R2, .. , R5) to be covered by
corresponding test scenarios (TS1, TS2, … , TS6)

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 15

Requirements

● Take joint responsibility on requirements

● Why?
● Requirements and testing work together
● Typically requirements are the most important test basis
● Out of a global survey about 48% of developers cited

changing or poorly documented project requirements as
the reason for failure [ADA15]

● Often root cause of defects in IT projects:
Requirements [Ric05]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 16

Requirements

● What to do?
● (In-official) order to the test team: Help to

● clarify requirements, find gaps, inconsistencies
● determine acceptance criteria for requirements

● Testers have to identify the most crucial and most risky
requirements => to be tested first

● Activities to be done, if requirements are missing or not
clear, especially non-functional requirements
● Clarification of business scenarios

=> Basis for test scenarios
● Identification of functional / non functional requirements, e.g. using

quality model defined by ISO 9126 [Wik16a]
=> Determination, which test type to use

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 17

Requirements

* Test condition = An item or event of a component or system that could
be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [IST15].

General
testing

objectives

Test Conditions*Test Conditions*

Test CasesTest Cases

Specification-
based

techniques

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 18

RisksRisks
Requirements

Requirements
specification

Requirements
specification User Story

As a Scheduler I want
to update a given

appointment so that I
could add another

date.

User Story
As a Scheduler I want

to update a given
appointment so that I

could add another
date.

Use CasesUse Cases

Functional
specification

Functional
specification

Older version
User manual

Older version
User manual

Interviews
with end
users,
potential
customers

Interviews
with end
users,
potential
customers

Older version
Bug reports

Older version
Bug reports

undocumented

Online forums
* Test condition = An item or event of a component or system that could

be verified by one or more test cases, e. g. a function, transaction,
feature, quality attribute, or structural element [IST15].

Test Conditions*Test Conditions*

Test CasesTest Cases

Specification-
based

techniques

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 19

Requirements

● How to identify requirements / risks?
● Interviews with stakeholders
E.g. Sales, end user, project manager, ...

● Definition of Business Scenarios
… to identify business needs
… to define use cases (Top down approach)
… to prioritize testing activities

e.g. in a corresponding workshop

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 20

Requirements

Top-Down Approach: Identifying requirements
(here: Use Cases) out of Business Scenarios

Business Scenario 1

Business Scenario 2

Use Cases out of Business Scenarios

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 21

Requirements

● Definition of acceptance criteria
● Helpful: Concrete examples.
● Out of it: Define test cases to be passed.

● Excerpt (out of agile software development):
 “Definition of done” is an agreement to decide, when
a realization of a requirement could be accepted by the
customer.
E.g. presentation successful, automated test cases
passed.

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 22

Requirements

● Prioritization of requirements

● High priority: Must – to be realized in the
next iteration, e.g. product release.

● Medium priority: Should – necessary.

● Low priority: Could – Nice to have
if there is enough time.

● High risk areas and high prioritized requirements result
in corresponding high prioritized test cases.

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 23

Requirements

● Unknown Non-functional Requirements are a big risk in
IT projects, if so called “self evident requirements” are
not fulfilled (security, performance, load).

● Specification documents often leave the area “Non-
Functional Requirements” empty or imprecise (“fast”,
“easy to use”, “secure”)
→ IT Architecture cannot follow conditions.
→ No proper test planning.

● Proposal: Proposal: Early identification of non-functional
requirements!

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 24

Requirements

● ISO/IEC 9126 Software engineering – Product quality [Wik16a]

● was an international standard for the evaluation of
software quality – focusing on the product

● tries to develop a common understanding of the project's
objectives and goals

● applies to characteristics to evaluate in a specific degree,
how much of the agreements got fulfilled

● Hint: Since 2011 there is a successor available:
ISO 25010:2011 has eight product quality characteristics
(in contrast to ISO 9126's six), and 39 sub-characteristics

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 25

Requirements

1 Functionality

6 Portability 2 Reliability

3 Usability

4 Efficiency

5 Maintainability

ISO/IEC 9126
Quality
Model

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 26

Requirements

● Proposal: Performing a work shop following ISO/IEC 9126

● Result: * Prioritization of quality criteria

* List of corresponding requirements including
 acceptance criteria

High priority Medium priority Low priority

1.2. Accuracy

6.3. Replaceability

5.4. Testability

4.1. Time Behaviour

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 27

Prioritization

Task:

● Testing of a simple program with three integers, up to
16 Bit

● Every combination should be tested

● Duration with assumption 100.000 tests / second

Solution:

● 216 * 216 * 216 = 248 combinations
= 281.474.976.710.656 combinations

● Duration: About 90 years

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 28

Prioritization

● So: You can't test everything

● What to do?
● Risk based testing
● Smart test design techniques (equivalence partitioning,

boundary value analysis)
● Prioritization

“Prioritise tests so that, when ever you stop testing, you
have done the best testing in the time available” (ISEB
testing foundation course material 2003)

● Always focus on the most important and most risky
requirements

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 29

Prioritization

● Which tests to plan, prepare and execute first?

● The higher the risk, the earlier
● The higher the value for business, the earlier
● Positive tests (instead of alternative tests / negative tests)

● Rule of thumb: Work with three priorities

● About 10% of all test cases should get priority 1
● About 50% to 70% of all test cases should get priority 2
● About 20% to 40% of all test cases should get priority 3

● Regular check and update of priorities

● Plan exploratory testing as well
… could be source for additional test cases

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 30

● A small number of modules usually contain most of the defects.

● Defect clustering is based on the
Pareto principle – the 80-20 rule.

Approximately 80% of the problems are caused by 20% of the
modules [Jaw13].

● Update of prioritization if required

of defects

Module
Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod7

Prioritization

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 31

● Defects
● Priority (test execution related): High prioritized defects to

fix first
● Severity (business impact): Most severe defects to fix first

● Ensuring that high prioritized tests get executed first,
the probability increases that severe defects get
detected early
==> Enough time to fix and retest

Prioritization

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 32

Communication

● Communication is a
(if not the)
key to project success

● Enforce communication
Requirements Engineer Developer Tester

● Role of testers:

● Helping to deliver software successful
● Not gate-keepers, but continually improve

Source: [PMI13]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 33

Communication

Main goal of communication

● … during test planning/ test analysis and design

● To identify scope:
Customer, principal, project manager

● To identify risks:
Test team, developer, sales, architect, end user, people
related to similar projects, investigation

● … during test implementation and execution

● early detection of issues
● update of test activities based on current test situation
● controlling testing

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 34

Communication

● Learning attitude
● Feedback / Retrospective / Lessons learned

● Use your and your fellows experience:
People know already – ask and transfer

● Use experience out of project team:
Regular lessons learned (workshops) with measures

● Establishing a failure culture:
Better we detect the defect than the customer

● Involve people, end-user, operation

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 35

Communication

● Meetings
● Try to install regular meetings concerning test topics

● Test analysis and design: Once or twice a week
● Test implementation and execution: Daily

● Better often regular short meetings instead of seldom
irregular long meetings

● Follow a simple approach in the meetings;
every participant should be involved in testing and report
● What did I achieve?
● Next steps
● Current issues

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 36

Communication

● Documentation:
● Test plan to communicate with principal / project team

● Consider: A (test) plan is always wrong,
● Worst than a wrong test plan: A dead test plan
● Goal of test planning is not the test plan but doing test

planning – Understand what to test how intense.
● Basic estimations

● Scope: How many test cases and defects expected?
● Schedule: Based on expected time for test design and

test execution, and expected defects

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 37

Communication

● Documentation:
● Test report to communicate to all project stakeholders

● Alignment concerning needs and contents with principal in
advance

● Consider: The test report is the working result and business
card of a tester

● Contents is based on test plan: Plan/actual comparison
● Test coverage
● Defect situation
● Quality statements
● Issues and risks

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 38

Early Testing

Consider and organize testing from the project start on,
as testing is much more than test execution:

● Test planning
Test order, test plan (cooperation with customer /
development, standards to follow), schedules,
organization, set-up of test team, test tools, ...

● Test analysis and design
Test environment, configuration management, review of
specifications and requirements, test scenario / test
case design, test data design, …

● Test execution with static test techniques
Review, code coverage, quality and complexity of code

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 39

Early Testing

Test team set-up

● Identification of roles and skills required for testing; team mix

● Young / old

● Male / female

● Different background (technical, business, user / operational
representative, testing experience {functional, security, operational,
performance})

● International

● (Business) Knowledge Transfer Sessions

● Training

● Ensure cooperation with customer, management, developer,
operation

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 40

Reviews

● Reviews help to
● clarify requirements,
● reduce project costs in detecting defects early,
● gain understanding,
● educate testers and new team members.

● Different types of reviews possible like
● Informal Review
● Walkthrough
● Technical Review
● Inspection

Could be performed as a
“Peer Review” by

colleagues of the producer
of the product

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 41

Reviews

Review of requirements, code review

Requirements
Engineer

Tester

Developer

Require-
ments

Review

Another
Developer

Code

Review

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 42

Reviews

Review of test cases based on requirements

Requirements
Engineer

Tester

Test
Cases

Review

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 43

Reviews

Cost-value ratio

● Reviews cost about 10 to 15 % of development budget.

● Reviews save costs [Bus90] [FLS00] [GG96]:

– About 14% up to 25% savings in IT projects possible
with additional costs of reviews already considered.

– It's possible to find up to 70% of defects in a document.

– Reduction of defect costs up to 75%.

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 44

Reviews

● Use checklists for reviews

● Cheap and efficient
● Challenge: “Right” checklist

Idea: Common preparation
● Good to use for milestones / quality gates
● Tailoring to adapt checklists to project needs

● General hint concerning review findings:
Do not address issues only, but do propose better
statements as well

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 45

Reviews

Example for good review finding [Wie99]:
"The HTML Parser shall produce an HTML markup error report
which allows quick resolution of errors when used by HTML
novices"

● Incomplete
What goes into the error report?

● Proposal
"The HTML Parser shall produce an error report that
contains the line number and text of any HTML errors found
in the parsed file and a description of each error found.
If no errors are found, the error report shall not be
produced."

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 46

Test automation

● Do smart test automation
● It's possible to save effort

A good test tool could support a good test process
● But it's possible to waste money as well

A good test tool does not improve a bad test process

● Automation of regression tests
● Required: Stable code, test cases and test data
● Maintenance of test scripts required
● Probability to detect new defects is low in general

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 47

Test automation

● Areas of test automation

● Unit tests
● Continuous integration

Consider automated regression test after every major
integration.

● Build procedures
● Test data generation
● Migration scripts
● Retests of defect fixes for automated regression tests

● In general: Start simple, e.g. with automation of repetitive tasks

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 48

Test know-how

● Get educated – Build up test know-how
Read testing books, e.g.
● Lisa Crispin, Janet Gregory: Agile Testing: A Practical Guide for Testers and Agile

Teams, Addison-Wesley Signature, 2008

● Cem Kaner, Jack Falk, Hung Quoc Nguyen: Testing Computer Software, Wiley
Computer Publising, 1999

● Cem Kaner, James Bach, Bret Pettichord: Lessons Learned in Software Testing,
Wiley Computer Publising, 2002

● Glenford J Myers, Tom Badgett, Corey Sandler: The art of Software Testing, Third
edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012

● Klaus Pohl, Chris Rupp: Requirements Engineering Fundamentals, 1st edition, Rocky
Nook Inc., 2011

● Andreas Spillner, Tilo Linz, Hans Schaefer: Software Testing Foundations: A Study
Guide for the Certified Tester Exam, 3rd Edition, 2011

● James A. Whittaker, Jason Arbon, Jeff Carollo: How Google Tests Software, Addison-
Wesley Professional, 2012

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 49

Test know-how

● Join testing communities / follow testing blogs, e.g.
in Germany ASQF [ASQ16]
in Thailand “we love bug” [Zyr16]

● Get certified in requirements engineering

● International Requirements Engineering Board, [IRE16];
“Certified Professional for Requirements Engineering”

● Get certified in testing
Achieve certification(s) from ISTQB [IST16]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 50

Test know-how

● Certification levels by ISTQB [IST16]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 51

Test know-how

● ISTQB world wide [IST16]

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 52

Sources

● [ADA15] Application Developers Alliance, Developer Insights Report, August
2015, http://www.appdevelopersalliance.org/developer-insights-report-2015

● [ASQ16] Homepage Arbeitskreis Software-Qualität und -Fortbildung e.V, 2016,
https://www.asqf.de/

● [Bus90] Bush, M.: Software Quality: The use of formal inspections at the Jet
Propulsion Laboratory. In: Proc. 12th ICSE, p. 196-199, IEEE 1990

● [Dus03] Elfriede Dustin: Effective Software Testing - 50 Specific Ways to
Improve Your Testing, Pearson Education, Inc. 2003

● [FLS00] Frühauf, K.; Ludewig, J,; Sandmayr, H.: Software-Prüfung: eine Fibel.
vdf, Verlag der Fachvereine, Zürich, 4. Aufl. 2000

● [GG96] Gilb, T.; Graham, D.: Software Inspections. Addison-Wesley, 1996

● [HW15] Shane Hastie, Stéphane Wojewoda: Standish Group 2015 Chaos
Report - Q&A with Jennifer Lynch on Oct 04, 2015,
http://www.infoq.com/articles/standish-chaos-2015

http://www.appdevelopersalliance.org/developer-insights-report-2015
https://www.asqf.de/
http://www.infoq.com/articles/standish-chaos-2015

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 53

Sources

● [IRE16] International Requirements Engineering Board, 2016,
https://www.ireb.org/

● [IST15] International Software Testing Qualifications Board (ISTQB): Standard
Glossary of Terms Used in Software Testing, Version 3.01, March 26th, 2015,
http://www.istqb.org/downloads/glossary.html

● [IST16] Homepage International Software Testing Qualifications Board
(ISTQB), 2016, http://www.istqb.org/

● [Jaw13] Ranjeet Jawale: Defect clustering & Pesticide paradox, 2013,
http://www.softwaretestingclub.com/profiles/blogs/defect-clustering-pesticide-
paradox

● [MSB12] Glenford J Myers, Tom Badgett, Corey Sandler: The art of Software
Testing, Third edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012

● [PMI13] PMI: The high cost of low performance: The essential role of
communication, May 2013, https://www.pmi.org/~/media/PDF/Business-
Solutions/The-High-Cost-Low-Performance-The-Essential-Role-of-
Communications.ashx

http://www.istqb.org/downloads/glossary.html
http://www.istqb.org/
http://www.softwaretestingclub.com/profiles/blogs/defect-clustering-pesticide-paradox
http://www.softwaretestingclub.com/profiles/blogs/defect-clustering-pesticide-paradox

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 54

Sources

● [Ric05] Randall W. Rice: STBC The Economics of Testing, 2005,
http://www.riceconsulting.com/public_pdf/STBC-WM.pdf

● [SJ06] Harry M. Sneed, Stefan Jungmayr: Produkt- und Prozessmetriken für
den Softwaretest, in “Informatik-Spektrum”, Springer Verlag, vol. 29, book 1,
Feb. 2006, page 23–38

● [Wie99] Karl E. Wiegers: Writing Quality Requirements, 1999,
http://processimpact.com/articles/qualreqs.html

● [Wik16] Wikipedia: Knight Capital Group, 2016,
https://en.wikipedia.org/wiki/Knight_Capital_Group

● [Wik16a] Wikipedia: ISO/IEC 9126, 2016,
https://en.wikipedia.org/wiki/ISO/IEC_9126

● [zyr16] Zyrakuse: We love bug Thai Software Testing Blog, 2016
http://www.welovebug.com/

https://en.wikipedia.org/wiki/Knight_Capital_Group
https://en.wikipedia.org/wiki/ISO/IEC_9126

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 55

Backup

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 56

Communication

Test execution by area

Test report example

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 57

Communication

Test execution progress

Test report example

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 58

Communication

Defect overview by severity

Test report example

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 59

ISO/IEC 9126 Quality Model

1 Functionality

1.1.Suitability
Does the software the

specified tasks?

1.2.Accuracy
E.g. the needed precision of

results

1.3.Interoperability
Cooperates with specified

systems

1.4.Compliance
...with conditions /

regulations

1.5.Security
No unauthorized access

possible

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 60

ISO/IEC 9126 Quality Model

2.1.Maturity
concerns frequency of failure of the

software.

2.2.Fault Tolerance
Ability to withstand (and recover) from

failure like unexpected inputs.

2.3.Recoverability
Ability to recover a failed system

including data / network

2 Reliability

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 61

ISO/IEC 9126 Quality Model

3.1.Learnability
Learning effort for different users

3.2.Understandability
How easy could systems functions be

understood?

3.3.Operability:
To keep a system in in a safe and

reliable functioning condition

3 Usability

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 62

ISO/IEC 9126 Quality Model

4.1.Time Behaviour
Response time, processing time,

throughput

4.2.Resource Behaviour:
Usage of RAM, disk space, network,

energy

4 Efficiency

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 63

ISO/IEC 9126 Quality Model

5.1.Stability:
Capability to avoid unexpected effects

from modifications of the system

5.2.Analyzability:
Ability to identify the root cause of a

failure, e.g. with system logs

5.3.Changeability:
Effort to do changes at the system

5.4.Testability:
Effort needed to test a system

change.

5 Maintainability

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 64

ISO/IEC 9126 Quality Model

6.1.Installability:
Effort to install a system in a specific

environment

6.2.Replaceability:
How easy is it to exchange a given

software component within a
specified environment (compatibility

of data)

6.3.Adaptability:
Ability of the system to change to new
specifications or to move to another

operating environment

6 Portability

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 65

Test Data Management

● Challenge: Dealing with test data

● Measures:

● Consider different test data status levels
● Initial test data set
● Working test data set

● Especially concerning migration projects and further
deployment of given systems:
Decision which kind of test data to use:
● Anonymous test data
● Processed real world data out of production system
● Copy of real world data out of production system

Winter 2015 / 2016 Uwe Gühl, Success Factor Software Testing 66

Interface testing

● Challenge: Integration of software modules or subsystems

● Measures:

● Continuous integration
● Fitting integration strategy
● Test environment

● Planning and set up at an early stage
● Early technical system connection tests, if technical

integration of systems / system components is working

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66

