
Software Testing

Foundation Level

Lecture 1 – Fundamentals of Testing

Uwe Gühl

Contents

1.1 What is Testing?

1.2 Why is Testing Necessary?

1.3 Seven Testing Principles

1.4 Test Process

1.5 The Psychology of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 2

Contents

1.1 What is Testing?

1.2 Why is Testing Necessary?

1.3 Seven Testing Principles

1.4 Test Process

1.5 The Psychology of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 3

(Fatal) software defects

Mars Climate Orbiter Loss, September 1999
• At 2 am on September 23 1999, 5 minutes before it was due to go behind the planet,

the Mars Climate Orbiter fired it’s main engine to go into orbit around Mars.

• No signal was detected from the spacecraft when it was due to come out from behind
the planets shadow.

• The plan was for the spacecraft to orbit at an altitude of 153 kilometers, which was far
above the minimum survivable altitude of 85 kilometers.

• However the last six to eight hours of data indicate the approach altitude was much
lower at just 60 kilometers.

• Why did the spacecraft approach so low?

Reason
• The likely cause of the problem related to the transfer of information between the

modules of code written by 2 groups:
– Mars Climate Orbiter spacecraft team in Colorado

– Mission navigation team in California

It seems that one team used English units (e.g., inches, feet and pounds) while
the other used metric units and there seems to have been no conversion between
the two.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 4

(Fatal) software defects

Meltdown and Spectre work on personal computers, mobile devices,

and in the cloud. Depending on the cloud provider's infrastructure, it

might be possible to steal data from other customers.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 5

Source: https://meltdownattack.com/

Meltdown breaks the most fundamental
isolation between user applications and the
operating system. This attack allows a
program to access the memory, and thus
also the secrets, of other programs and the
operating system.

Spectre breaks the isolation between different
applications. It allows an attacker to trick error-
free programs, which follow best practices,
into leaking their secrets. In fact, the safety
checks of said best practices actually increase
the attack surface and may make applications
more susceptible to Spectre

(Fatal) software defects

Boeing 737 MAX Grounding

• Two fatal accidents with new airplanes happened with 346 deaths

– 189 on Lion Air Flight 610 on October 29, 2018

– 157 on Ethiopian Airlines Flight 302 on March 10, 2019

• In March 2019, aviation authorities around the world grounded the
Boeing 737 MAX passenger airliner

• Because of this longest grounding ever of a U.S. airliner, Boeing had
lost over $10 billion as of November 2019

Reason

• The activation logic of MCAS (Maneuvering Characteristics
Augmentation System) – part of the flight control system of Boeing 737
MAX – has been shown to be vulnerable to erroneous angle of attack
data, as analyses have shown.

• Additionally increased regulator scrutiny lead to newly discovered
problems.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 6

Source: https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings/

(Fatal) software defects

Pacemaker hack

• In August 2018 at the Black Hat conference, Billy Rios
and Jonathan Butts, have demonstrated serious security
vulnerabilities in the software of the pacemakers.

• In Medtronic's infrastructure an attacker could run
malicious firmware to control implanted pacemakers
remotely

• According to Rios, Medtronic had been warned of the
dangers 18 months earlier, but did not take action

• In October 2018, Medtronic has pulled the plug on its
internet-based software update system

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 7

Sources: https://www.wired.com/story/pacemaker-hack-malware-black-hat/

https://techcrunch.com/2018/10/16/medical-device-maker-medtronic-finally-fixes-its-hackable-pacemaker/

Testing is more

• Testing is not only running tests

• Testing: The process consisting of all lifecycle

activities, both static and dynamic, concerned

with planning, preparation and evaluation of a

component or system and related work products

to determine that they satisfy specified

requirements, to demonstrate that they are fit for

purpose and to detect defects.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 8

Testing is more

• Dynamic Testing: Testing that involves the
execution of the test item

• Static Testing: Testing a work product without the
work product code being executed.

• So, testing covers as well
– Evaluation of the quality of a test object.

– Review of work products such as
 requirements,

 user stories, and

 source code.

• Test activities are organized and carried out
differently in different lifecycles

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 9

2.1

Objectives of Testing

• The objectives of testing depend on the project, they
might include:

– Prevent defects by evaluating requirements, user
stories, design, and code

– Verify if all specified requirements have been fulfilled

– Check if the test object is complete and validate if it
works as the users and other stakeholders expect

– Find defects and failures

– Comply with contractual, legal, or regulatory
requirements or standards, and/or to verify the test
object’s compliance with such requirements or
standards

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 10

Objectives of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 11

Provide sufficient information to stakeholders to

allow them to make informed decisions,

especially regarding the level of quality of the

test object. For example, based on a

specification:

1. Test coverage

2. Defects with criticality

3. Statements concerning software quality criteria

Image source:

https://commons.wikimedia.org/

wiki/File:Scheibenwischer3.svg/

Final
test

report

https://commons.wikimedia.org/

Objectives of Testing

• The objectives can vary depending on context,

test level, and the software development

lifecycle model; for example with following goals:

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 12

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

• find as many failures as possible so that

related defects could be fixed early.

• Increase code coverage

• confirm that the system works as

expected and satisfies

requirements.

• give information to stakeholders

about the risk of releasing the

system at a given time.

Objectives of Testing

• “In most cases ‘what’ you test in a system is

much more important than ‘how much’ you test”

(Craig 2002)

• “Prioritize tests so that, when ever you stop

testing, you have done the best testing in the

time available” (ISEB testing foundation course

material 2003)

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 13

Testing and Debugging

• Testing

– Testing can show failures that are caused by

defects.

– Responsible: Tester

• Debugging

– Debugging: The process of finding, analyzing

and removing the causes of failures in a

component or system.

– Responsible: Developer

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 14

Testing and Debugging

• How many testers does it take to

change a light bulb?

– None.

– Testers just notice that a room is dark.

Testers don’t fix the problems, they just find them.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 15

Summary

• Testing is a process, and covers below others
planning, preparation and evaluation of a
component or system and related work products

• Testing has specific objectives depending on

– Context of the system/component to be tested

– Test level

– Software development lifecycle model

• Testing and debugging are different

– Testing: Find defects

– Debugging: Analyze and fix defects

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 16

Contents

1.1 What is Testing?

1.2 Why is Testing Necessary?

1.3 Seven Testing Principles

1.4 Test Process

1.5 The Psychology of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 17

Testing’s Contributions to Success

• Appropriate testing could help to reduce

defective deliveries, e.g. by

– Involving testers in requirements reviews and

user story refinements

Related defect fixes increase the probability of

correct testable features

– Validating and verifying software prior to release

can detect failures that could be fixed before

delivery

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 18

Testing’s Contributions to Success

• Validation
Confirmation by examination and through
provision of objective evidence that the
requirements for a specific intended use or
application have been fulfilled.
“Did we build the right product?”

• Verification
Confirmation by examination and through
provision of objective evidence that specified
requirements have been fulfilled.
“Did we build the product right?”

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 19

Quality Assurance and Testing

• Quality management (QM)

Coordinated activities to direct and control an organization with

regard to quality that include establishing a quality policy and quality

objectives, quality planning, quality control, quality assurance, and

quality improvement

• Quality assurance (QA)

Activities focused on providing confidence that quality requirements

will be fulfilled.

• Quality control (QC)

A set of activities designed to evaluate the quality of a component or

system.

• Test process improvement

A program of activities designed to improve the performance and

maturity of the organization's test processes and the results of such

a program.
Uwe Gühl, 2020

Software Testing – Foundation Level

Fundamentals of Testing
 01 - 20

Quality Assurance and Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 21

QM

QA QC

Are we building the right product?

Detection of faults
by inspecting and testing the product

Are we building the product right?

Prevention of faults
by inspecting and testing the process

Quality Assurance and Testing

• Relationship QA – QC

As QA inspects the processes, it investigates in

test processes as well, resulting in test process

improvements

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 22

QA QC

Examples for test processes and test work products

 Defect Management Process

 Test Case Creation Process

 Test Cases

 Test Reports

Errors, Defects, and Failures

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 23

A person makes

an error …

… that creates a

defect in the

software

… that can cause

a failure in

operation

Source: https://www.softwaretestinggenius.com

Defect – could be

detected during

static testing

Failure – could be detected

only by dynamic testing

Errors, Defects, and Failures

• Error
A human action that produces an incorrect result.

• Defect (Synonyms: bug, fault)
An imperfection or deficiency in a work product where
it does not meet its requirements or specifications.

• Failure
An event in which a component or system does not
perform a required function within specified limits.

• Root cause
A source of a defect such that if it is removed, the
occurrence of the defect type is decreased or
removed.

• Root cause analysis (Synonym: causal analysis)
An analysis technique aimed at identifying the root
causes of defects. By directing corrective measures at
root causes, it is hoped that the likelihood of defect
recurrence will be minimized.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 24

Error

Defect

Failure

… causes

… may

result in

Errors, Defects, and Failures

• Possible reasons for errors

– Time pressure

– Inexperienced or insufficiently skilled project
members

– Miscommunication, especially about
requirements

– Complexity of the code, design, architecture, the
underlying problem to be solved, and/or the
technologies used

– Misunderstanding about interfaces

– New technologies

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 25

Summary

• Testing should be considered early in projects,

e.g. for reviews of working products.

• Testing and quality assurance are not the same,

but related.

• An error causes a defect and may result in a

failure.

• Communication issues are often reasons for

errors.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 26

Contents

1.1 What is Testing?

1.2 Why is Testing Necessary?

1.3 Seven Testing Principles

1.4 Test Process

1.5 The Psychology of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 27

Principle 1

Testing shows the presence of defects,

not their absence

• “Program testing can be used to show the

presence of bugs, but never to show their

absence!” (Dijkstra 1969)

• Testing reduces the probability of undiscovered

defects remaining in the software but,

even if no defects are found,

it is not a proof of correctness.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 28

Image source: https://upload.wikimedia.org/wikipedia/commons/8/8a/H96566k.jpg

Principle 2

Exhaustive testing is impossible

A simple program with three integers, up to 16 Bit,

should be tested.

Every combination should be considered.

How long is the duration assuming 100.000 tests /

second?

Solution: 216 * 216 * 216 = 248 combinations

 = 281.474.976.710.656 combinations

 Duration: About 90 years

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 29

Image source: https://commons.wikimedia.org/wiki/File:GHS-pictogram-explos.svg

Principle 2

Exhaustive testing is impossible
• Exhaustive testing (Synonym: complete testing):

 A test approach in which the test suite comprises
 all combinations of input values and preconditions.
 not feasible except for trivial cases.

• Risk based testing: Testing in which the management,
 selection, prioritization, and use of testing activities
 and resources are based on corresponding
 risk types and risk levels.

 should be used instead; recommendation:
– Based on most important requirements

=> Business process analysis and prioritization

– Based on highest risk
=> Risk analysis and prioritization

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 30

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 31

Source: https://azevedorafaela.com/2018/04/27/what-is-the-cost-of-a-bug/

Principle 3

Early testing saves time and money

3.1

Principle 3

Early testing saves time and money

• Costs of testing depend on various factors like

maturity of the development process or quality of

the software

• In general finding defects as early as possible

lowers the costs

• To find defects early ...

=> start testing activities as early as possible in

the software or system development life cycle,

=> focus on defined objectives.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 32

Principle 4

Defects cluster together
• A small number of modules usually contains most of the defects

discovered during pre-release testing, or is responsible for most of

the operational failures.

• Pareto principle – the 80-20 rule

Approximately 80 per cent of the problems are caused by 20 per

cent of the modules.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 33

of

defects

Module Module1 Module2 Module3 Module4 Module5 Module6 Module7

Principle 4

Defects cluster together

• Fenton and Ohlsen detected in empirical

investigations that 20 % of the modules

(equals to about 30 % of the code) are source of

60 % of the defects [FO00].

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 34

Source: Norman E. Fenton, Niclas Ohlsen:

Quantitative Analysis of Faults and Failures in a Complex Software System;

IEEE Transactions on Software Engineering, Vol. 26, No. 7, July 2000

The diagram shows

% of modules versus

% of faults for a release n

Principle 5

Beware of the pesticide paradox

• If the same tests are repeated over and over

again, eventually the same set of test cases will

no longer find any new defects.

• To overcome this “pesticide paradox”:

– Regularly review and revise test cases

– Write new and different tests to exercise different

parts of the software or system to find potentially

more defects.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 35

Principle 6

Testing is context dependent
• Basic for Testing is the needed software quality.

• Testing is done differently in different contexts.
Compare
– Quality requirements of

medical software  web application

– Testing of
safety-critical software  e-commerce mobile app

– Testing in
Agile project  a sequential software
 development lifecycle project

• Balance
Effort for testing must be related to expected quality

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 36

2.1

Principle 7

Absence-of-errors is a fallacy

Finding and fixing defects

• will not ensure the success of a system

• does not help if the system built is unusable and

does not fulfill the users’ needs and

expectations.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 37

Image Source: https://www.reddit.com/r/softwaregore/comments/1afbjv/most_useless_error_message_2013/

Summary

Experience over the past 50 years resulted in general
guidelines common for all testing known as principles

1. Testing shows the presence of defects, not their
absence

2. Exhaustive testing is impossible

3. Early testing saves time and money

4. Defects cluster together

5. Beware of the pesticide paradox

6. Testing is context dependent

7. Absence-of-errors is a fallacy

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 38

Contents

1.1 What is Testing?

1.2 Why is Testing Necessary?

1.3 Seven Testing Principles

1.4 Test Process

1.5 The Psychology of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 39

Test Process

• There is no one universal software test process,

but there are common sets of test activities

• Test process: The set of interrelated activities

comprising of test planning, test monitoring and control,

test analysis, test design, test implementation, test

execution, and test completion.

• An organization‘s test strategy defines details

• For projects tailoring is required – depending on context

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 40

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Test Process in Context

Following factors could influence the test process

• Software development lifecycle model and
project methodologies being used

• Test levels and test types being considered

• Product and project risks

• Business domain

• Operational constraints like
– Budgets and resources

– Timescales

– Complexity

– Contractual and regulatory requirements

• Organizational policies and practices

• Required internal and external standards

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 41

Test Process in Context

Examples for implemented test processes

1. Sequential software development

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 42

Test

Deployment and

maintenance

Analysis

Design

Realization

Test Process in Context

Examples for implemented test processes

1. Sequential software development

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 43

Analysis

Design

Realization

Test

Deployment and

maintenance

Test com-
pletion

Test monitoring and control

Test
implemen-

tation

Test
execution

Test
design

Test
analysis

Test
planning

Test Process in Context

Examples for implemented test processes

2. Agile development

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 44

Sprint 1 Sprint 2 Sprint 3

Sprint 1:

Sprint 2:

Sprint 3:

Test com-
pletion

Test monitoring and control

Test
implemen-

tation

Test
execution

Test
design

Test
analysis

Test
planning

Test
implemen-

tation

Test
execution

Test
design

Test
analysis

Test
planning

Test
design

Test
analysis

Test
planning

Test activities

In following for each test activity will be described

the related

• tasks

• working products

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 45

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Agile projects:

Definition of ready

Test planning: The activity of establishing or updating a
test plan.

• Tasks
– Define the objectives of testing

– Define the approach for meeting test objectives within
constraints imposed by the context

– Define Entry criteria
The set of conditions for officially
starting a defined task

– Define Exit criteria
The set of conditions for officially
completing a defined task, like e.g. coverage criteria

– Update test plans depending on feedback from monitoring
and control activities.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 46

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Agile projects:

Definition of done

• Coverage: The degree to which specified

coverage items have been determined or have

been exercised by a test suite expressed as a

percentage.

• Coverage item: An attribute or combination of

attributes that is derived from one or more test

conditions by using a test technique that enables

the measurement of the thoroughness of the test

execution.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 47

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Working products

depending on size of project and context:

– Master test plan

A test plan that is used to coordinate multiple test

levels or test types.

– Test plan

Documentation describing the test objectives to

be achieved and the means and the schedule for

achieving them, organized to coordinate testing

activities

Uwe Gühl, 2020

Software Testing – Foundation Level

Fundamentals of Testing
 01 - 48

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

5.2

Test monitoring: The activity that checks the status of testing
activities, identifies any variances from planned or expected, and
reports status to stakeholders.

Test control: The activity that develops and applies corrective
actions to get a test project on track when it deviates from what
was planned.

• Tasks
– On-going comparison of actual progress against planned

progress using test monitoring metrics as defined in the test
plan.

– Taking actions necessary to meet the objectives of the test plan

– Evaluation of exit criteria

– Communication of test reports,
including deviations from the plan,
information for decisions

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 49

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Don't follow an

outdated plan

• Example for evaluation of exit criteria

– Checking test results and logs against specified

coverage criteria

– Assessing the level of component or system

quality based on test results and logs

– Determining if more tests are needed (e.g., if

tests originally intended to achieve a certain level

of product risk coverage failed to do so, requiring

additional tests to be written and executed)

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 50

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Working products

– Test report
Documentation summarizing test activities and results.
Differ between

 Test progress report
A type of test report produced at regular intervals about the
progress of test activities against a baseline, risks, and
alternatives requiring a decision

 Test summary report
A type of test report produced at completion milestones that
provides an evaluation of the corresponding test items
against exit criteria.

• Address also project management concerns like task
completion, resource allocation and usage, and effort.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 51

Test
comple-

tion

Test
monitoring
and control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

5.3

• Test analysis: The activity that identifies

test conditions by analyzing the test basis.

– Test conditions:

A testable aspect of a component or system

identified as a basis for testing.

– Test basis:

The body of knowledge used as the basis for test

analysis and design.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 52

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks

– Determine „what to test“ focusing on measurable
coverage criteria.

– Analyze the test basis, i.e.

 Requirements specification like business scenarios,
use cases, user stories

 Design and implementation information like software
architecture, interface specifications

 Implementation of the system including code,
database metadata

 Risk analysis reports consider functional, non-
functional, and structural aspects

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 53

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks
– Evaluate the test basis to find defects, i.e.

 Ambiguities
Example: The last 10 bookings and cancellations of the
customer are displayed in the window.
Examples for ambiguous words: quick, fast, user-friendly, easy,
sufficient, adequate

 Omissions
Example: “The system shall display the user’s defined
bookmarks in a collapsible hierarchical tree structure.”
Change to:
“The system shall display the user’s defined bookmarks in a
collapsible and expandable hierarchical tree structure.”

 Inconsistencies
Example: (1) The user types a country in an entry field.
(2) After the user has chosen a country in a list field, an entry
field for city pops up.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 54

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Sources: Helmut Balzert: Lehrbuch der Softwaretechnik, Springer, 2009

https://www.jamasoftware.com/blog/five-ways-ambiguous-language-will-ruin-your-requirements//

Potential benefit

• Tasks
– Evaluate the test basis to find defects, i.e.
 Inaccuracies

Example: The web page should respond fast.

 Contradictions
Example: (1) After login of an user the system
connects automatically to the database
(2) The user logins. If the user presses the [Connect]
button, the system connects to the database

 Superfluous statements
Example: (1) On every page the company logo should
appear
(2) If the user cancels, a page opens with the
company logo

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 55

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks

– Identify features and sets of features to be tested

– Define and prioritize test conditions for each

feature based on analysis of the test basis

– Ensure bi-directional traceability between each

element of the test basis and the associated test

conditions

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 56

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Working products

– Prioritized test conditions

each of which is ideally bi-directionally traceable

to the specific element(s) of the test basis it

covers.

– Test charters (for exploratory testing)

Documentation of the goal or objective for a test

session.

– Defect reports related to the test basis in case

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 57

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

4.4

• Test design: The activity that derives and specifies test
cases from test conditions.

• Test case: A set of preconditions, inputs,
actions (where applicable), expected results and
postconditions, developed based on test conditions.

• Tasks
– Determine „how to test“

– Generate high-level test cases:
A test case without concrete values for input data and
expected results.

– Generate sets of high-level test cases

– Ensure bi-directional traceability between the test basis,
test conditions, and test cases

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 58

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks

– Identify necessary test data: Data needed for test

execution

– Design the test environment: An environment

containing hardware, instrumentation, simulators,

software tools, and other support elements

needed to conduct a test.

 identify any required infrastructure and tools

– In case: Identify defects

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 59

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Potential benefit

• Working products

– Test cases (High-level)

– Sets of test cases

– Design and/or identification of the necessary test

data

– Design of the test environment

– Identification of infrastructure and tools

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 60

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Test implementation: The activity that prepares

the testware needed for test execution based on

test analysis and design

• Test design and test implementation tasks are

often combined.

• Testware: Work products produced during the

test process for use in planning, designing,

executing, evaluating and reporting on testing.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 61

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks

– Determine: “Do we now have everything in place

to run the tests?”

– Create low-level test cases: A test case with

concrete values for preconditions, input data,

expected results and postconditions and detailed

description of actions (where applicable).

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 62

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Test case – Example

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 63

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Test Case ID SDM-0007

Test Case name Create Student data set

Priority critical

Description
Creation of a student data set, with name, first name,

and enrollment number

Precondition Enrollment number must already been given

Postcondition Data are stored in database, table SDM_student

Links SDM-0005

Test steps

No. Activity Test data Expected result

10 Call SDM system SDM system opens

20 Call "Add student" Input masks open

30 Enter last name Daowang Data are shown

40 Enter first name Rid Data are shown

50 Enter enrollment number 4055-991 Data are shown

60 Press [submit] System shows: Data are processed

• Tasks

– Develop and prioritize test procedures

(Synonym: test script): A sequence of test cases in

execution order, and any associated actions that may

be required to set up the initial preconditions and any

wrap up activities post execution.

– Create automated test scripts in case

– Create test suites: A set of test scripts or test

procedures to be executed in a specific test run.

– Create test execution schedules: A schedule for the

execution of test suites within a test cycle.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 64

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks

– Build the test environment

 Verify that everything needed has been set up

correctly

– Prepare test data and ensure the load in the test

environment

– Verify and update bi-directional traceability

between the test basis, test conditions, test

cases, test procedures, and test suites

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 65

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Test environment – example

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 66

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

DEV

DEV-INT

TEST

INT

PROD

INT2

DEV DEV

PROD = production environment

INT = Integration environment

INT2 = Integration environment –

Copy of PROD

TEST = Test environment

DEV-INT = Development integration

environment

DEV = Development environment

for developers

Deployment of

releases

• Working products

– Test cases (Low-level)

– Test procedures

– Automated test scripts in case

– Test suites

– Test execution schedule

– Test environment

– Test conditions defined in test analysis may be

further refined

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 67

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Working products

– Test data

 All data needed for testing

 Depending on project based on

 business object data model or

 physical data model

 Artificial data or based on real business data,
e. g. out of legacy systems  data generator

 Which test data are included with delivery?

 Feed of test data

 Delete test data
(„naked system“, “database clean-up”)

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 68

Test
comple-

tion

Test
monitoring

and
control

Test
implemen-

tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Test execution: The activity that runs a test on a

component or system producing actual results.

• During test execution, test suites are run in

accordance with the test execution schedule.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 69

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks
– Record the IDs and versions of the test item(s) or test

object, test tool(s), and testware

– Execute tests either manually or by using test execution
tools

– Compare actual results with expected results

– Analyze anomalies to establish their likely causes, e.g.,
 failures may occur due to defects in the code,

 but false positives also may occur
(“It’s not a bug ,it’s a feature”)

– Report defects based on the failures observed

– Logging the outcome of test execution

.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 70

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

pass fail blocked In progress Unexecuted

5.6

1.2

• Tasks

– Repeat test activities either as a result of action

taken for an anomaly, or as part of the planned

testing, e.g.,

 execution of a corrected test,

 confirmation testing, and/or

 regression testing

– verify and update bi-directional traceability

between the test basis, test conditions, test

cases, test procedures, and test results.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 71

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Working products
– Documentation of the status of individual test cases or test

procedures (e.g., ready to run, pass, fail, blocked, deliberately
skipped, etc.)

– Defect reports

– Documentation about which test item(s), test object(s), test tools,
and testware were involved in the testing

• Goal: After completion of the test execution the status of each
element of the test basis is reported via bi-directional
traceability to give transparency if coverage criteria have been
met: like for example:
– requirements that passed their tests,

– requirements that failed their tests and/or have defects
associated with them,

– requirements that have pending tests.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 72

Test
comple-

tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

5.6

Test completion: The activity that makes testware
available for later use, leaves test environments in a
satisfactory condition and communicates the results of
testing to relevant stakeholders.

• Test completion activities occur at project milestones
such as when

– a software system is released,

– a test project is completed (or cancelled),

– an Agile project iteration is finished,

– a test level is completed, or

– a maintenance release has been completed

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 73

Test
comple

-tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Tasks
– Create a test summary report for stakeholders

– Lessons learned for future iterations, releases, and
projects

– Hand over the testware to the maintenance teams, other
project teams, and/or other stakeholders who could benefit
from its use

– Close defects reports

– Enter change requests or product backlog items for any
defects that remain unresolved

– Finalize and archive the test environment, the test data,
the test infrastructure, and other testware for later reuse

– Use the information gathered to improve test process
maturity

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 74

Test
comple

-tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Working products

– test summary reports,

– action items for improvement of subsequent

projects or iterations,

– change requests or product backlog items,

– finalized testware.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 75

Test
comple

-tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 76

Test
comple

-tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

• Example for a test report
Iteration 29 SDM test dashboard

• Example for a test report

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 77

Test
comple

-tion

Test
monitoring

and
control

Test
implemen

-tation

Test
execu-

tion

Test
design

Test
ana-
lysis

Test
planning

Iteration 29 SDM quality characteristics

0 10 20 30 40 50 60 70 80 90 100

Overall rating: Iteration 29: Satisfactory (65 %)

 Iteration 28: Satisfactory (65 %)

Functional:

1. Loading data 

Several loads stuck, results in 6 open defects;

measures: defects will be fixed/retested,

additional story will be implemented

2. Export 

19 defects, 1 critical; measures: defects will be

fixed/retested

…

Non-functional:

1. Usability 

Several issues reported by end-user,;

measures: usability workshop

2. Security 

13 defects, 2 critical; measures: critical defects

will be fixed/retested

3. Supportability: 

Operation processes are established

4. Efficiency: 

Performance test could not be performed ;

measures: task force established

…

Traceability between the Test Basis

and Test Work Products

Traceability: The degree to which a relationship
can be established between two or more work
products.

• Main goal: evaluation of test coverage

• For effective test monitoring and control:
establish and maintain traceability throughout
the test process between

– each element of the test basis and

– the various test work products associated with
that element

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 78

Traceability between the Test Basis

and Test Work Products

• Good traceability supports

– Analyzing the impact of changes

– Making testing auditable

– Meeting IT governance criteria

– Improving the understandability of test reports, for
example showing requirements and their test
result

– Communication of test results to stakeholders

– Providing information to assess product quality,
process capability, and project progress against
business goals

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 79

Traceability between the Test Basis

and Test Work Products
Example: Mobile application

• Test basis contains
– a list of requirements
 Each requirement is an element

– a list of supported mobile devices
 Each supported device is an element

• Coverage criteria
– require at least one test case for each element of the test basis.

– can act effectively as key performance indicators (KPIs)

– show achievement of software test objectives

• Once executed, the results of these tests tell stakeholders if
– specified requirements are fulfilled

– failures were observed on supported devices

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 80

1.1

Summary

• Many different test processes are possible

• A test process consists of the following main groups of
activities:
– Test planning

– Test monitoring and control

– Test analysis

– Test design

– Test implementation

– Test execution

– Test completion

• Traceability supports effective test monitoring and control
as well as reporting to stakeholders with linking each
element of the test basis with various test products

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 81

Contents

1.1 What is Testing?

1.2 Why is Testing Necessary?

1.3 Seven Testing Principles

1.4 Test Process

1.5 The Psychology of Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 82

Human Psychology and Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 83

Human Psychology and Testing

• Communication problems may occur, particularly

if testers are seen only as messengers of

unwanted news about defects.

• However, there are several ways to improve

communication and relationships between

testers and others ...

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 84

Human Psychology and Testing

• Start with collaboration rather than battles.
Common goal of everyone: Better quality systems

• Communicate findings on the product in a neutral,
fact-focused way, e. g. reproducible defect
descriptions

• Write objective and factual incident reports and
review findings.

• Do not criticize the person who created it.

• Try to understand how the other person feels and
why they react as they do.

• Confirm that the other person has understood what
you have said and vice versa.

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 85

Tester’s and Developer’s Mindsets

• Errare humanum est (English: To err is human)

… who admits?

• Development = constructive

Testing = ?

• Is it good for a developer to test his own

program?

What do you think?

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 86

Tester’s and Developer’s Mindsets

Developer

• Successful if no

defects found

• “Testing” to show

program is working

• Blinkered in own work

Tester

• Successful if defects

are found

• Testing to evaluate

• „Bean counter“

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 87

Tester’s and Developer’s Mindsets

• The mindset to be used while developing

software is different from that used while testing

and reviewing.

• With the right mindset:

Developers are able to test their own code.

• A certain degree of independence (avoiding the

author bias) often makes the tester more

effective at finding defects and failures.

• Independence is not a replacement for familiarity

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 88

Tester’s and Developer’s Mindsets

• Who should test?

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 89

Familiar
with test
object

Blind
against own
errors

Deve-
loper Needs fa-

miliarization
with topic

Impartial

Test know
how

Inde-
pendent

Tester

Idea:

Balanced distribution

of testing

Summary

• Tester need good communication skills

– Common goal: Good quality!

– Working results should be communicated in a

neutral, fact-focused way

• Mindsets of testers and developers concerning

the test object are different

A higher level of product quality could be

achieved in bringing them together

Uwe Gühl, 2020
Software Testing – Foundation Level

Fundamentals of Testing
 01 - 90

