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Software Development Lifecycle 

Models 
• Software development lifecycle (SDLC):  

The activities performed at each stage in software 
development, and how they relate to one another 
logically and chronologically 

• A software development lifecycle model describes  
– the types of activity performed at each stage in a 

software development project, and  

– how the activities relate to one another logically and 
chronologically. 

• There are a number of different  
software development lifecycle models, 
each of which requires different approaches to 
testing. 
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Software Development and 

Software Testing 
• In any software development lifecycle model,  

there are several characteristics of good testing: 

– For every development activity,  
there is a corresponding test activity 

– Each test level has test objectives specific to that level 

– Test analysis and design for a given test level begin during 
the corresponding development activity 

– Testers  

 participate in discussions to define and refine requirements 
and design 

 are involved in reviewing work products like requirements, 
design, and user stories 

– Test activities start in the early stages of the lifecycle 
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Software Development and 

Software Testing 
• Common software development lifecycle models in this 

context are defined as follows: 

– Sequential development model: A type of software 
development lifecycle model in which a complete system is 
developed in a linear way of several discrete and 
successive phases with no overlap between them. 

– Iterative and incremental development models 

 Iterative development model: A type of software 
development lifecycle model in which the component or 
system is developed through a series of repeated cycles. 

 Incremental development model: A type of software 
development lifecycle model in which the component or 
system is developed through a series of increments. 
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Software Development and 

Software Testing 

• Sequential development models 

– Waterfall model 
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Software Development and 

Software Testing 

• Sequential development models 

– V-model: A sequential development lifecycle 

model describing a one-for-one relationship 

between major phases of software development 

from business requirements specification to 

delivery, and corresponding test levels from 

acceptance testing to component testing. 
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Software Development and 

Software Testing 

• Sequential development models 

– V-model 

Uwe Gühl, 2020 
Software Testing – Foundation Level 

Testing Throughout the Software Development Lifecycle 
 02 - 9 

Requirements Analysis 

System Design 

Architecture  
Design 

Module Design 

Acceptance Testing 

System Testing 

Integration Testing 

Component (Unit) Testing 

Coding 



Software Development and 

Software Testing 

• Sequential development models 

– V-model 
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Software Development and 

Software Testing 

• Iterative and incremental development models 

– Iterative development: 

 Groups of features are specified, designed, built, 

and tested together in a series of cycles 

 Cycles often have a fixed duration. 

 Instead of features, changes to features 

developed in earlier iterations or changes in 

project scope could be considered in a cycle 

 Each iteration delivers working software which is 

a growing subset of the overall set of features 
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Software Development and 

Software Testing 

• Iterative and incremental development models 

– Incremental development: 

 Establishing requirements, designing, building, 

and testing a system in pieces 

 Software’s features grow incrementally.  

 The feature increments could also be changes 

like 

 a single change to a user interface screen 

 a new query option. 
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Software Development and 

Software Testing 
• Iterative and incremental development models 

– Agile software development: A group of software 
development methodologies based on iterative 
incremental development, where requirements and 
solutions evolve through collaboration between self-
organizing cross-functional teams.  

– Agile manifesto 
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Software Development and 

Software Testing 

• Iterative and incremental development models 
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Software Development and 

Software Testing 

• Iterative and incremental development models 

– Rational Unified Process (RUP) 
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Software Development and 

Software Testing 

• Iterative and incremental development models 

– Scrum 
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Software Development and 

Software Testing 

• Iterative and incremental development models 

– Kanban 
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Software Development and 

Software Testing 

• Iterative and incremental development models 

– Spiral 
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Software Development and 

Software Testing 
• Iterative and incremental development models 

– Often overlapping and iterating test levels throughout 
development 

– Each feature to be tested at several test levels as it 
moves towards delivery 

– Continuous delivery 

 Iteration by iteration or major/minor releases 

 Typically multiple automated tests required 

 Importance of regression test increases as a system is 
growing 

– Test organization flexible within self-organizing teams  
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Software Development and 

Software Testing 
• Iterative and incremental development models 

– Agile testing involves testing from the customer 
point of view as early as possible – depending on 
availability and stability of code. 

– Test automation plays a central role. 
Typical test execution proceeding after delivery: 
 (Automated) smoke test/sanity check 

 Execution of automated regression test suite 

 Execution of manual tests concerning new 
implemented user stories/retest of bug fixes 

 Extending automated test suite 
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Software Development Lifecycle 

Models in Context 
• Selecting and adapting a software development 

lifecycle model should consider the context of 
project and product characteristics 

– project goal,  

– type of product being developed,  

– business priorities (e.g., time-to-market), 

– identified product and project risks, 

– possible organizational and cultural issues 

 

 

– . 
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2.2 

2.3 

Software Development Lifecycle 

Models in Context 
Commercial off-the-shelf (COTS)  
(Synonym: off-the-shelf software):  
A type of product developed in an identical format for a 
large number of customers in the general market. 

• Example: Test organization for a COTS software 
product into a larger system. 

– Purchaser performs interoperability testing at the 
system integration test level (integration to customer 
system infrastructure) 

– Purchaser supports at the acceptance test level 
(functional and non-functional,  
user acceptance and operational acceptance) 
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Software Development Lifecycle 

Models in Context 
• Software development models to be adapted to the context of 

project and product characteristics; possible reasons: 
– Difference in product risks of systems  

(complex or simple project) 

– Many business units are part of a project or program  
(combination of sequential and agile development) 

– Short time to deliver a product to the market  
(merge of test levels and/or integration of test types in test 
levels) 

• Internet of Things (IoT) systems 
– consist of different objects like devices, products, and services,  

– apply separate software development lifecycle models for each 
object. 
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Summary 

• Software development lifecycle models 

– Sequential development models 
Complete system is developed, all phases with no 
overlap between them 
Examples: Waterfall model, V-model 

– Iterative and incremental development models 
Growing system in fixed cycles, after each iteration 
there is working software  
Examples: RUP, Scrum, Kanban, Spiral 

• Good ideas for testing: 

– Development activity   Test activity 

– Each test level has test objectives 
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Test Levels 

• Test levels:  
A specific instantiation of a test process. 

– are characterized by the  
following attributes: 

 Specific objectives 

 Test basis, 
referenced to derive test cases 

 Test object  

 Typical defects and failures 

 Specific approaches and  
responsibilities 
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Test Levels 

• For every Test level a fitting test environment is 

required, e.g. 
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Component Testing 

Component testing  
(Synonyms: module testing, unit testing): A test level that 
focuses on individual hardware or software components. 

• Objectives 
– Verifying if the component works as designed and 

specified 
 Functionality (e.g., correctness of calculations),  

 Non-functional characteristics (e.g., searching for memory 
leaks), and  

 Structural properties (e.g., decision testing). 

– Finding defects in the component 

– Preventing defects from escaping to higher test levels 

– Reducing risk 

– Building confidence in the component’s quality 
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Component Testing 

• Objectives 

– In agile projects:  

 Automated component regression tests play a key role 

 Ensure changes have not broken existing components 

– Required, depending on project: 

 mock objects,  

 service virtualization:  
A technique to enable virtual delivery of services which 
are deployed, accessed and managed remotely. 

 harnesses,  

 stubs, and  

 drivers.  
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Component Testing 

• Test basis 

– Detailed design 

– Code 

– Data model 

– Component 

specifications 

• Test objects 

– Components, units or 

modules 

– Code and data 

structures 

– Classes 

– Database modules 
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Component Testing 

• Typical defects and failures 

– Incorrect functionality (e.g., not as described in 

design specifications) 

– Data flow problems 

– Incorrect code and logic 

• Specific approaches and responsibilities 

– Tests executed by 

 developer who wrote the code, 

 other developers in the project. 
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Component Testing 

• Test driven development 
– Prepare and automate test cases before coding 

– Based on very short development cycles 

– Proceeding 
 First write an (initially failing) automated test case that 

defines a desired improvement or new function. 

 Second produce the minimum amount of code to pass 
that test. 

 Finally refactor the new code to acceptable standards. 

• Related: 
– Acceptance test–driven development (ATDD) 

– Behavior-driven development (BDD) 
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Integration Testing 

• Integration: The process of combining components or 
systems into larger assemblies. 

• Integration testing: A test level that focuses on 
interactions between components or systems. 

– Component integration testing  
(Synonym: link testing):  
Testing in which the test items are interfaces and 
interactions between integrated components. 

– System integration testing:  
A test level that focuses on interactions between systems. 

• Integration and Integration test have different objectives 

• An integration strategy should consider efficient testing 

Uwe Gühl, 2020 
Software Testing – Foundation Level 

Testing Throughout the Software Development Lifecycle 
 02 - 33 

Acceptance Testing 

System Testing 

Integration Testing 

Component (Unit) Testing 



Integration Testing 

• System integration testing:  

– Additional test level might be planned 
 
 
 

– Challenging: test of external interfaces 

 How to ensure that test-blocking defects in the 
external organization’s code are resolved? 

 Arranging for test environments 

 Support for negative test, e.g., 
external system is not working, to be simulated 
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Integration Testing 

• Objectives 

– Verifying whether the functional and  

non-functional behaviors of the interfaces are as 

designed and specified 

– Finding defects (which may be in the interfaces 

themselves or within the components or systems) 

– Preventing defects from escaping to higher test 

levels 

– Building confidence in the quality of the interfaces 

– Reducing risk 
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Integration Testing 

• Objectives 

– In case: Supporting continuous integration:  

A software development procedure merging, 

integrating and testing all changes as soon as 

they are committed within an automated process. 

– Automated integration regression tests as part of 

continuous integration to ensure that existing 

interfaces, components, or systems are not 

broken 
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Integration Testing 

• Test basis 
– Use cases 

– Workflows 

– Architecture at 
component or system 
level 

– Software and system 
design 

– Interface and 
communication protocol 
specifications 

– External interface 
definitions 

– Sequence diagrams 

• Test objects 
– Subsystems 

– Databases 

– Infrastructure 

– Interfaces 

– APIs 

– Microservices 
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Integration Testing 

• Typical defects and failures 

– for component integration testing 

 Incorrect data, missing data, or incorrect data 
encoding 

 Incorrect sequencing or timing of interface calls 

 Interface mismatch 

 Failures in communication between components 

 Unhandled or improperly handled communication 
failures between components 

 Incorrect assumptions about the meaning, units, or 
boundaries of the data being passed between 
components 
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Integration Testing 

• Typical defects and failures 

– for system integration testing 

 Inconsistent message structures between systems 

 Incorrect data, missing data, or incorrect data 
encoding 

 Interface mismatch 

 Failures in communication between systems 

 Unhandled or improperly handled communication 
failures between systems 

 Incorrect assumptions about the meaning, units, or 
boundaries of the data being passed between systems 

 Failure to comply with mandatory security regulations 
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Integration Testing 

• Proceeding 

– Testing is depending from integration strategy 

 Incremental 

A small number of additional components or 

systems at a time 

 “big bang” 

Integrating all components or systems in one 

single step 

– Following the incremental approach, a solution is 

required for components/systems not in place yet 
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Integration Testing 

• Proceeding 

– Required: Test harness: 

A test environment comprised of stubs and drivers 

needed to execute a test suite. 

 Driver (Synonym: test driver): A temporary 

component or tool that replaces another component 

and controls or calls a test item in isolation. 

 Stub: A skeletal or special-purpose implementation of 

a software component, used to develop or test a 

component that calls or is otherwise dependent on it. It 

replaces a called component. 

Uwe Gühl, 2020 
Software Testing – Foundation Level 

Testing Throughout the Software Development Lifecycle 
 02 - 41 

Acceptance Testing 

System Testing 

Integration Testing 

Component (Unit) Testing 

Driver 

Comp1 

Test 

object 

Stub 

Comp4 



Integration Testing 

• Integration strategy „Top-down“ 
The component at the top of the component hierarchy is tested first, 

lower level components are simulated by stubs. 
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Integration Testing 

• Integration strategy “Bottom-up” 
The lowest level components are tested first, and then  

used to facilitate the testing of higher level components. 
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Integration Testing 

• Integration strategy “Hardest first” 

– The most critical components 

are developed and tested first 

– Drivers and stubs are required, means effort 

– Feasibility is checked at an early stage 

reducing the risk that the project fails 
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Integration Testing 

• Integration strategy  

“Function oriented”/”Transaction oriented” 

– Integrate the components that realize a common 

functionality/transaction 

– Drivers and stubs are required, means effort 

– User/Data oriented approach  

reducing the risk that the project fails 
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Integration Testing 

• Integration strategy “Ad hoc” 

– Integrate the components that are available 

– Drivers and stubs are required, means effort 

– Integration and integration testing could start 

early 
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Integration Testing 

• Integration strategy “Big bang” 

– Integrate the components all at once 

– No drivers and stubs are required 

– Integration and integration testing could start only 

at a later stage 

– Localization of defects very difficult 

– Risky strategy 
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System Testing 

System testing:  
A test level that focuses on verifying that a system as a 
whole meets specified requirements. 

• Objectives 
– Validating that the system is complete and  

will work as expected 
 Consider end-to-end tasks 

– Verifying whether the functional and non-functional 
behaviors of the system are as designed and specified 

– Finding defects 

– Preventing defects from escaping to higher test levels or 
production 

– Building confidence in the quality of the system as a whole 

– Reducing risk 
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System Testing 

• Objectives – depending on context 
– verifying data quality 

– automated system regression tests 
to ensure that changes have not broken  
existing features or end-to-end capabilities. 

• Additional hints 
– System testing  
 often produces information that is used by 

stakeholders to make release decisions.  

 may also satisfy legal or regulatory requirements or 
standards. 

– The test environment should ideally correspond to the 
final target or production environment 
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System Testing 

• Test basis 
– System and software 

requirement 
specifications  
(functional and  
non-functional) 

– Risk analysis reports 

– Use cases 

– Epics and user stories 

– Models of  
system behavior 

– State diagrams 

– System and user 
manuals 

• Test objects 
– Applications 

– Hardware/software 
systems 

– Operating systems 

– System under test 
(SUT):  
A type of test object that 
is a system. 

– System configuration 
and configuration data 
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System Testing 

• Typical defects and failures 

– Incorrect calculations 

– Incorrect or unexpected  

system functional or non-functional behavior 

– Incorrect control and/or data flows within the system 

– Failure to properly and completely carry out  

end-to-end functional tasks 

– Failure of the system to work  

 properly in the system environment(s) 

 as described in system and user manuals 
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System Testing 

• Specific approaches and responsibilities 

– focus on the overall, end-to-end behavior of the 

system as a whole,  

both functional and non-functional. 

– typically carried out by independent testers who 

rely heavily on specifications 
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System Testing 

• Specific approaches and responsibilities 

– Risk: Communication issues 

 Defects in specifications like  

 missing user stories,  

 incorrectly stated business requirements. 

 Impact: 

 Lack of understanding of system behavior 

 Disagreements 

 False positives  

 False negatives 

 Mitigation: Early involvement of testers in  
user story refinement/review 
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Acceptance Testing 

Acceptance testing: A test level that focuses on 
determining whether to accept the system. 

• Objectives: 
– Establishing confidence in the quality of the system as a 

whole 

– Validating that the system is complete and will work as 
expected 

– Verifying that functional and non-functional behaviors of 
the system are as specified 

• Finding defects is often not an objective 

• Finding a significant number of defects 
to be considered a major project risk. 

• Different forms of acceptance testing are known 
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Acceptance Testing 

• User acceptance testing:  

A type of acceptance testing performed to 

determine if intended users accept the system. 

– Objective: building confidence that the users can 

use the system to meet their needs, fulfill 

requirements, and perform business processes 

with minimum difficulty, cost, and risk. 

– Real or simulated operational environment. 

– Done by business users (Customers, system 

users) 
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Acceptance Testing 

• Operational acceptance testing  
(Synonym: production acceptance testing):  
A type of acceptance testing performed to determine 
if operations and/or systems administration staff can 
accept a system. 

– Objective: confidence that the operators or system 
administrators can keep the system working properly 
for the users in the operational environment, even 
under exceptional or difficult conditions. 

– Testing in a (simulated) production environment by 

 operations, 

 systems administration staff. 
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Acceptance Testing 

• Operational acceptance testing  

– Scope: 

 Testing of backup and restore 

 Installing, uninstalling and upgrading 

 Disaster recovery 

 User management 

 Maintenance tasks 

 Data load and migration tasks 

 Periodic checks for security vulnerabilities 

 Performance testing 
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Acceptance Testing 

• Contractual acceptance testing:  

A type of acceptance testing performed to verify 

whether a system satisfies its contractual 

requirements. 

– Objective: compliance has been achieved 

– Basics: Acceptance criteria as defined in the 

contract for custom-developed software 

– Performed by users or independent testers 
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Acceptance Testing 

• Regulatory acceptance testing:  
A type of acceptance testing performed to verify 
whether a system conforms to relevant laws, 
policies and regulations. 

– Objective: compliance has been achieved 

– Basics: any regulations that must be adhered to, like 

 government regulations, 

 legal regulations, 

 safety regulations. 

– performed by users or by independent testers, 
sometimes audited by regulatory agencies. 
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Acceptance Testing 

• Alpha and beta testing 

– Alpha testing: A type of acceptance testing performed in 
the developer's test environment by roles outside the 
development organization. 

– Beta testing: A type of acceptance testing performed at 
an external site to the developer's test environment by 
roles outside the development organization. 

– typically used by developers of commercial off-the-shelf 
(COTS) software to get feedback from potential or existing  

 users, 

 customers, and/or 

 operators. 
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Acceptance Testing 

• Alpha and beta testing 

– Objectives 

 Confidence that the system could be used under 

normal, everyday conditions 

 Detection of defects related to the conditions and 

environment(s) in which the system will be used, 

especially when those conditions and 

environment(s) are difficult to replicate by the 

development team. 
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Acceptance Testing 

• Test basis 
– Business processes 

– User or business 
requirements 

– Regulations,  
legal contracts and 
standards 

– Use cases and/or  
user stories 

– System requirements 

– System or  
user documentation 

– Installation procedures 

– Risk analysis reports 

• Test basis for operational 
acceptance testing 
– Backup and restore 

procedures 

– Disaster recovery 
procedures 

– Non-functional 
requirements 

– Operations documentation 

– Deployment and 
installation instructions 

– Performance targets 

– Database packages 

– Security standards or 
regulations 
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Acceptance Testing 

• Test objects 

– System under test 

– System configuration and configuration data 

– Business processes for a fully integrated system 

– Recovery systems and hot sites (for business 
continuity and disaster recovery testing) 

– Operational and maintenance processes 

– Forms 

– Reports 

– Existing and converted production data 

Uwe Gühl, 2020 
Software Testing – Foundation Level 

Testing Throughout the Software Development Lifecycle 
 02 - 63 

Acceptance Testing 

System Testing 

Integration Testing 

Component (Unit) Testing 



Acceptance Testing 

• Typical defects and failures 

– System workflows  
do not meet business or user requirements 

– Business rules are not implemented correctly 

– System does not satisfy  
contractual or regulatory requirements 

– Non-functional failures such as  

 security vulnerabilities, 

 inadequate performance efficiency under high 
loads, 

 improper operation on a supported platform. 
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Acceptance Testing 

• Specific approaches and responsibilities 

– Acceptance testing is often the responsibility of  

 customers,  

 business users,  

 product owners,   

 operators of a system,  

 other stakeholders. 

– often last test level; possible exceptions: 

 When a COTS software product is installed or 
integrated 

 A new functional enhancement before system testing 

 At the end of an iteration in agile projects 
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Summary 

 

• Component testing 

• Integration testing 
– Component integration 

testing  

– System integration testing 

– Integration strategies: 
 Top-down 

 Bottom-up 

 Hardest first 

 “Function oriented”/ 
”Transaction oriented” 

 Ad hoc 

 Big bang 

 

 

 

• System testing 

• Acceptance testing  
– User acceptance testing 

– Operational acceptance 
testing 

– Contractual acceptance 
testing  

– Regulatory acceptance 
testing 

– Alpha and beta testing. 
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2.2 Test Levels 

2.3 Test Types 

2.4 Maintenance Testing 
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Test types 

• Test type:  
A group of test activities based on specific test objectives 
aimed at specific characteristics of a component or system.  
– Evaluating functional quality characteristics, such as 

completeness, correctness, and appropriateness 

– Evaluating non-functional quality characteristics, such as 
reliability, performance efficiency, security, compatibility, and 
usability 

– Evaluating whether the structure or architecture of the 
component or system is correct, complete, and as specified 

– Evaluating the effects of changes, such as confirming that 
defects have been fixed (confirmation testing) and looking for 
unintended changes in behavior resulting from software or 
environment changes (regression testing) 

• To measure testing specific characteristics of a software 
system, coverage is used. 
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Test types 

• 8 product quality characteristics as defined by 

ISO 25010 to evaluate a system and software 

 functional suitability, 

 performance efficiency 

 compatibility, 

 usability, 

 reliability, 

 security, 

 maintainability, 

 portability. 
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Functional testing 

• Functional testing:  

Testing performed to evaluate if a component or 

system satisfies functional requirements. 

– is the testing of 

“what” the system should do. 
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Functional testing 

• Basics: Functional requirements, such as 
– Business requirements specifications,  

– functional specifications, 

– use cases, 

– epics: A large user story that cannot be delivered as 
defined within a single iteration or is large enough  
that it can be split into smaller user stories. 

– User stories: A user or business requirement consisting of 
one sentence expressed in the everyday or business 
language which is capturing the functionality a user needs, 
the reason behind it, any non-functional criteria, and also 
including acceptance criteria.  

• Functional requirements could be undocumented 
(implicit requirements) 
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Functional testing 
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Functional testing 

• To be performed at all test levels – with different focus, 
e.g., tests for components may be based on a 
component specification 

• Black-box techniques are used to derive  
– test conditions and 

– test cases 

• Functional coverage  
– to measure which functionality has been exercised by tests 

– expressed as a percentage of the type(s) of element being 
covered 

• Expert knowledge 
– Special skills or knowledge of the business area 

– Understanding of different roles  
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Non-functional testing 

• Non-functional testing:  

Testing performed to evaluate that a component 

or system complies with non-functional 

requirements. 

– is the testing of 

“how well” the system behaves. 
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4.2 

Non-functional testing 

• To be performed at all test levels as early as possible 

• Black-box techniques are used to derive  

– test conditions and  

– test cases. 

Example: boundary value analysis to define the  
stress conditions for performance tests. 

• Non-Functional coverage  

– to measure the thoroughness of non-functional testing  

– is the extent to which some type of non-functional element 
has been exercised by tests 

– expressed as a percentage of the type(s) of element being 
covered 
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Non-functional testing 

• Expert knowledge required, e.g., knowledge of 

– inherent weaknesses of a design or technology 

Example: 

 Security vulnerabilities associated with particular 

programming languages 

– particular user base 

Example: 

 User profiles of   

healthcare facility management systems 
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White-box Testing 

• White-box testing (Synonyms: clear-box testing, 
code-based testing, glass-box testing,  
logic-coverage testing, logic-driven testing,  
structural testing, structure-based testing):  
Testing based on an analysis of the internal 
structure of the component or system. 

• System’s internal structure or implementation may 
include  
– code, 

– architecture, 

– work flows, 

– data flows within the system. 
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White-box Testing 

• Structural coverage: 
Coverage measures based on the internal 
structure of a component or system. 

– extent to which some type of structural element 
has been exercised by tests,  

– expressed as a percentage of the type of element 
being covered. 

– At the component testing level we talk about 
Code coverage: The coverage of code. 
… with different aspects like statement coverage 
or decision coverage 
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White-box Testing 

• Required skills/knowledge: 

– coding related to used programming language(s),  

– how data is stored (e.g., to evaluate possible 

database queries), 

– how to use coverage tools and to correctly 

interpret their results. 
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Change-related Testing 

Change-related testing: A type of testing initiated by 

modification to a component or system. 

• Changes are made to a system 

– to correct a defect , 

– because of new or changing functionality. 

• Change-related testing should confirm that the 

changes have 

– corrected the defect or 

– implemented the functionality correctly, and 

– not caused any unforeseen negative consequences. 
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Change-related Testing 

• Confirmation testing (Synonym: re-testing):  

A type of change-related testing performed after 

fixing a defect to confirm that a failure caused by 

that defect does not reoccur. 

– Depending on the context conduction of 

 steps to reproduce the failure(s) caused by the 

defect, 

 all test cases that failed due to the defect, 

 new tests to cover changes needed to fix the 

defect. 
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Change-related Testing 

• Regression testing: 
A type of change-related testing to detect whether 
defects have been introduced or uncovered in 
unchanged areas of the software. 

• Possible changes 
– Fix of a defect 

– Introducing new/changed functionality/features; 
especially in agile software development and IoT 

– Changes to the environment, such as a new version 
of an operating system or database management 
system  

– New version of a COTS software product  
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Change-related Testing 

• Especially for evolving systems very important.  
A change made in one part of the code, could 
accidentally affect the behavior  

– of other parts of the code,  

– within the same component,  

– in other components of the same system, or even  

– in other systems. 

• Regression test suites  

– run many times and generally evolve slowly,  

– are a strong candidate for automation. 
=> should start as soon as possible in the project 
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Test types and test levels 

Example: banking application – functional tests 
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Acceptance Testing 

System Integration 

Testing 

System Testing 

Component  Integration 

Testing 

Component (Unit) Testing 

• Banker approves a credit application 

• Banker declines a credit application 

• Check an account holder’s credit score 

with an external microservice 

• Account holder applies for a line of 

credit on his checking account 

• Account information captured at the 

user interface is passed to the 

business logic. 

• Calculate compound interest. 



Test types and test levels 

Example: banking application – non-functional tests 
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Acceptance Testing 

System Integration 

Testing 

System Testing 

Component  Integration 

Testing 

Component (Unit) Testing 

• Usability tests: Evaluate the accessibility of the 

banker’s credit processing interface for people with 

disabilities. 

• Reliability tests: Evaluate system robustness if the 

credit score microservice fails to respond. 

• Portability tests: Check if the presentation layer 

works on all supported browsers and mobile 

devices. 

• Security tests: Check buffer overflow vulnerabilities 

due to data passed from the user interface to the 

business logic. 

• Performance tests: Evaluate the number of CPU 

cycles required to perform a complex total interest 

calculation.. 



Test types and test levels 

Example: banking application – white-box tests 
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Acceptance Testing 

System Integration 

Testing 

System Testing 

Component  Integration 

Testing 

Component (Unit) Testing 

• Cover all supported financial data file structures and 

value ranges for bank-to-bank transfers. 

• Exercise all possible inquiry types sent to the credit 

score microservice. 

• Cover sequences of web pages that can occur 

during a credit line application. 

• Exercise how each screen in the browser interface 

passes data to the next screen and to the business 

logic. 

• Achieve complete statement and decision coverage 

for all components that perform financial 

calculations. 
4.3 



Test types and test levels 

Example: banking application – change-related tests 
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Acceptance Testing 

System Integration 

Testing 

System Testing 

Component  Integration 

Testing 

Component (Unit) Testing 

• All previously-failed tests are re-executed after a 

defect found in acceptance testing is fixed. 

• Tests of the application interacting with the credit 

scoring microservice are re-executed daily as part 

of continuous deployment of that microservice. 

• All tests for a given workflow are re-executed if any 

screen on that workflow changes. 

• Confirm fixes to interface-related defects as the 

fixes are checked into the code repository. 

• Automated regression tests are built for each 

component and included within the continuous 

integration framework. 



Summary 

• Test types 

– functional  

– non-functional  

– white-box  

– change-related, differing between 

 confirmation testing  

 regression testing 

• All test types could be performed at any 

test level 
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• Once deployed to production environments, 
software and systems need to be maintained, e.g., 
– Changes to fix defects 

– New functionality 

– Alter already-delivered functionality 

– Preserve or improve non-functional  
quality characteristics,  
 especially 

 
 
 

 less important 
 

Maintenance Testing 
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Maintenance Testing 

• Maintenance: 

The process of modifying a component or 

system after delivery to correct defects,  

improve quality characteristics, or  

adapt to a changed environment. 

• Maintenance testing: 

Testing the changes to an operational system or 

the impact of a changed environment to an 

operational system. 
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Maintenance Testing 

• A maintenance release may require 
maintenance testing  

– at multiple test levels,  

– using various test types. 

• The scope of maintenance testing depends on: 

– The degree of risk of the change, for example, 
the degree to which the changed area of software 
communicates with other components or systems 

– The size of the existing system 

– The size of the change 

Uwe Gühl, 2020 
Software Testing – Foundation Level 

Testing Throughout the Software Development Lifecycle 
 02 - 92 



Triggers for Maintenance 

• Reasons for software maintenance, and thus 

maintenance testing 

– Modifications 

 Planned enhancements (e.g., release-based),  

 Corrective and emergency changes, 

 Changes of the operational environment 

(operational system and/or database upgrades),  

 Upgrades of COTS software, 

 Patches for defects and vulnerabilities. 
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Triggers for Maintenance 

• Reasons for software maintenance,  
and thus maintenance testing 
– Migration 

 Migration from one platform to another operational tests 
  of the new environment  

  of the changed software 

 Data migration  tests of data conversion 
Data from another application are migrated into the system 
being maintained 

 Retirement of a system could require 
 testing of data migration, 

 testing archiving if long data retention periods are required, 

 testing of restore/retrieve procedures, 

 regression testing of remaining functionality. 
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Impact Analysis for Maintenance 

Impact analysis:  
The identification of all work products affected by a change, 
including an estimate of the resources needed to 
accomplish the change. 

• evaluates the changes that were made for a 
maintenance release to identify the intended 
consequences 

• evaluates expected and possible side effects of a 
change 

• identifies the areas in the system that will be affected by 
the change 

• helps to identify the impact of a change on existing tests. 
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Impact Analysis for Maintenance 

• Impact analysis challenges 

– Specifications (e.g., business requirements, user 
stories, architecture) are out of date or missing 

– Test cases are not documented or are out of date 

– Bi-directional traceability between tests and the test 
basis has not been maintained 

– Tool support is weak or non-existent 

– The people involved do not have domain and/or 
system knowledge 

– No sufficient attention has been paid to the software's 
maintainability during development 
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Summary 

• Maintenance testing is required for productive 
systems because of changes related to 

– Modifications 

 Planned enhancements with new/changed 
functionality 

 Corrective and emergency changes like hot fixes of 
defects 

 Patches for defects and vulnerabilities. 

– Migration 

 Migration from one platform to another 

 Data migration  

 Retirement of a system 
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