
Software Testing

Foundation Level

Lecture 2 – Testing Throughout the

Software Development Lifecycle

Uwe Gühl

Contents

2.1 Software Development Lifecycle Models

2.2 Test Levels

2.3 Test Types

2.4 Maintenance Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 2

Contents

2.1 Software Development Lifecycle Models

2.2 Test Levels

2.3 Test Types

2.4 Maintenance Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 3

Software Development Lifecycle

Models
• Software development lifecycle (SDLC):

The activities performed at each stage in software
development, and how they relate to one another
logically and chronologically

• A software development lifecycle model describes
– the types of activity performed at each stage in a

software development project, and

– how the activities relate to one another logically and
chronologically.

• There are a number of different
software development lifecycle models,
each of which requires different approaches to
testing.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 4

Software Development and

Software Testing
• In any software development lifecycle model,

there are several characteristics of good testing:

– For every development activity,
there is a corresponding test activity

– Each test level has test objectives specific to that level

– Test analysis and design for a given test level begin during
the corresponding development activity

– Testers

 participate in discussions to define and refine requirements
and design

 are involved in reviewing work products like requirements,
design, and user stories

– Test activities start in the early stages of the lifecycle

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 5

Software Development and

Software Testing
• Common software development lifecycle models in this

context are defined as follows:

– Sequential development model: A type of software
development lifecycle model in which a complete system is
developed in a linear way of several discrete and
successive phases with no overlap between them.

– Iterative and incremental development models

 Iterative development model: A type of software
development lifecycle model in which the component or
system is developed through a series of repeated cycles.

 Incremental development model: A type of software
development lifecycle model in which the component or
system is developed through a series of increments.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 6

Software Development and

Software Testing

• Sequential development models

– Waterfall model

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 7

Test

Deployment and

maintenance

Analysis

Design

Realization

test activities only occur
after all other development
activities have been
completed.

Software Development and

Software Testing

• Sequential development models

– V-model: A sequential development lifecycle

model describing a one-for-one relationship

between major phases of software development

from business requirements specification to

delivery, and corresponding test levels from

acceptance testing to component testing.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 8

2.2

Software Development and

Software Testing

• Sequential development models

– V-model

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 9

Requirements Analysis

System Design

Architecture
Design

Module Design

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Coding

Software Development and

Software Testing

• Sequential development models

– V-model

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 10

Requirements Analysis

System Design

Architecture
Design

Module Design

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Coding

Validation
Test object with
test specifications
against test basis

Verification

Derived requirements

against requirements

Software Development and

Software Testing

• Iterative and incremental development models

– Iterative development:

 Groups of features are specified, designed, built,

and tested together in a series of cycles

 Cycles often have a fixed duration.

 Instead of features, changes to features

developed in earlier iterations or changes in

project scope could be considered in a cycle

 Each iteration delivers working software which is

a growing subset of the overall set of features

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 11

Big plus: usable software in
weeks or even days.

Software Development and

Software Testing

• Iterative and incremental development models

– Incremental development:

 Establishing requirements, designing, building,

and testing a system in pieces

 Software’s features grow incrementally.

 The feature increments could also be changes

like

 a single change to a user interface screen

 a new query option.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 12

Software Development and

Software Testing
• Iterative and incremental development models

– Agile software development: A group of software
development methodologies based on iterative
incremental development, where requirements and
solutions evolve through collaboration between self-
organizing cross-functional teams.

– Agile manifesto

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 13

Excurses

Source: https://agilemanifesto.org/

Software Development and

Software Testing

• Iterative and incremental development models

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 14

Excurses

Software Development and

Software Testing

• Iterative and incremental development models

– Rational Unified Process (RUP)

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 15

Phases Sub
processes

Iterations

Image source: https://upload.wikimedia.org/wikipedia/commons/1/19/Development-iterative.png

Software Development and

Software Testing

• Iterative and incremental development models

– Scrum

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 16

Image source: https://en.wikipedia.org/wiki/File:Scrum_process.svg

Software Development and

Software Testing

• Iterative and incremental development models

– Kanban

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 17

Image source: https://commons.wikimedia.org/wiki/File:Sample_Kanban_Board.png

Software Development and

Software Testing

• Iterative and incremental development models

– Spiral

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 18

Image source: https://commons.wikimedia.org/w/index.php?curid=9000950

Software Development and

Software Testing
• Iterative and incremental development models

– Often overlapping and iterating test levels throughout
development

– Each feature to be tested at several test levels as it
moves towards delivery

– Continuous delivery

 Iteration by iteration or major/minor releases

 Typically multiple automated tests required

 Importance of regression test increases as a system is
growing

– Test organization flexible within self-organizing teams

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 19

Software Development and

Software Testing
• Iterative and incremental development models

– Agile testing involves testing from the customer
point of view as early as possible – depending on
availability and stability of code.

– Test automation plays a central role.
Typical test execution proceeding after delivery:
 (Automated) smoke test/sanity check

 Execution of automated regression test suite

 Execution of manual tests concerning new
implemented user stories/retest of bug fixes

 Extending automated test suite

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 20

Excurses

Software Development Lifecycle

Models in Context
• Selecting and adapting a software development

lifecycle model should consider the context of
project and product characteristics

– project goal,

– type of product being developed,

– business priorities (e.g., time-to-market),

– identified product and project risks,

– possible organizational and cultural issues

– .

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 21

Internal administrative system Safety critical system

Same development and testing?

2.2

2.3

Software Development Lifecycle

Models in Context
Commercial off-the-shelf (COTS)
(Synonym: off-the-shelf software):
A type of product developed in an identical format for a
large number of customers in the general market.

• Example: Test organization for a COTS software
product into a larger system.

– Purchaser performs interoperability testing at the
system integration test level (integration to customer
system infrastructure)

– Purchaser supports at the acceptance test level
(functional and non-functional,
user acceptance and operational acceptance)

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 22

Software Development Lifecycle

Models in Context
• Software development models to be adapted to the context of

project and product characteristics; possible reasons:
– Difference in product risks of systems

(complex or simple project)

– Many business units are part of a project or program
(combination of sequential and agile development)

– Short time to deliver a product to the market
(merge of test levels and/or integration of test types in test
levels)

• Internet of Things (IoT) systems
– consist of different objects like devices, products, and services,

– apply separate software development lifecycle models for each
object.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 23

Summary

• Software development lifecycle models

– Sequential development models
Complete system is developed, all phases with no
overlap between them
Examples: Waterfall model, V-model

– Iterative and incremental development models
Growing system in fixed cycles, after each iteration
there is working software
Examples: RUP, Scrum, Kanban, Spiral

• Good ideas for testing:

– Development activity  Test activity

– Each test level has test objectives

Uwe Gühl, 2020

Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 24

Contents

2.1 Software Development Lifecycle Models

2.2 Test Levels

2.3 Test Types

2.4 Maintenance Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 25

Test Levels

• Test levels:
A specific instantiation of a test process.

– are characterized by the
following attributes:

 Specific objectives

 Test basis,
referenced to derive test cases

 Test object

 Typical defects and failures

 Specific approaches and
responsibilities

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 26

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Test Levels

• For every Test level a fitting test environment is

required, e.g.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 27

Production-like test

environment

Development

environment

Integration test

environment

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Component Testing

Component testing
(Synonyms: module testing, unit testing): A test level that
focuses on individual hardware or software components.

• Objectives
– Verifying if the component works as designed and

specified
 Functionality (e.g., correctness of calculations),

 Non-functional characteristics (e.g., searching for memory
leaks), and

 Structural properties (e.g., decision testing).

– Finding defects in the component

– Preventing defects from escaping to higher test levels

– Reducing risk

– Building confidence in the component’s quality

 Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 28

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Component Testing

• Objectives

– In agile projects:

 Automated component regression tests play a key role

 Ensure changes have not broken existing components

– Required, depending on project:

 mock objects,

 service virtualization:
A technique to enable virtual delivery of services which
are deployed, accessed and managed remotely.

 harnesses,

 stubs, and

 drivers.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 29

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Component Testing

• Test basis

– Detailed design

– Code

– Data model

– Component

specifications

• Test objects

– Components, units or

modules

– Code and data

structures

– Classes

– Database modules

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 30

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Component Testing

• Typical defects and failures

– Incorrect functionality (e.g., not as described in

design specifications)

– Data flow problems

– Incorrect code and logic

• Specific approaches and responsibilities

– Tests executed by

 developer who wrote the code,

 other developers in the project.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 31

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Often with no formal

defect management

Component Testing

• Test driven development
– Prepare and automate test cases before coding

– Based on very short development cycles

– Proceeding
 First write an (initially failing) automated test case that

defines a desired improvement or new function.

 Second produce the minimum amount of code to pass
that test.

 Finally refactor the new code to acceptable standards.

• Related:
– Acceptance test–driven development (ATDD)

– Behavior-driven development (BDD)

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 32

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Integration: The process of combining components or
systems into larger assemblies.

• Integration testing: A test level that focuses on
interactions between components or systems.

– Component integration testing
(Synonym: link testing):
Testing in which the test items are interfaces and
interactions between integrated components.

– System integration testing:
A test level that focuses on interactions between systems.

• Integration and Integration test have different objectives

• An integration strategy should consider efficient testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 33

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• System integration testing:

– Additional test level might be planned

– Challenging: test of external interfaces

 How to ensure that test-blocking defects in the
external organization’s code are resolved?

 Arranging for test environments

 Support for negative test, e.g.,
external system is not working, to be simulated

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 34

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

System Integration

Testing

System Testing

Integration Testing

• Objectives

– Verifying whether the functional and

non-functional behaviors of the interfaces are as

designed and specified

– Finding defects (which may be in the interfaces

themselves or within the components or systems)

– Preventing defects from escaping to higher test

levels

– Building confidence in the quality of the interfaces

– Reducing risk

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 35

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Objectives

– In case: Supporting continuous integration:

A software development procedure merging,

integrating and testing all changes as soon as

they are committed within an automated process.

– Automated integration regression tests as part of

continuous integration to ensure that existing

interfaces, components, or systems are not

broken

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 36

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Test basis
– Use cases

– Workflows

– Architecture at
component or system
level

– Software and system
design

– Interface and
communication protocol
specifications

– External interface
definitions

– Sequence diagrams

• Test objects
– Subsystems

– Databases

– Infrastructure

– Interfaces

– APIs

– Microservices

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 37

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Typical defects and failures

– for component integration testing

 Incorrect data, missing data, or incorrect data
encoding

 Incorrect sequencing or timing of interface calls

 Interface mismatch

 Failures in communication between components

 Unhandled or improperly handled communication
failures between components

 Incorrect assumptions about the meaning, units, or
boundaries of the data being passed between
components

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 38

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Typical defects and failures

– for system integration testing

 Inconsistent message structures between systems

 Incorrect data, missing data, or incorrect data
encoding

 Interface mismatch

 Failures in communication between systems

 Unhandled or improperly handled communication
failures between systems

 Incorrect assumptions about the meaning, units, or
boundaries of the data being passed between systems

 Failure to comply with mandatory security regulations

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 39

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Proceeding

– Testing is depending from integration strategy

 Incremental

A small number of additional components or

systems at a time

 “big bang”

Integrating all components or systems in one

single step

– Following the incremental approach, a solution is

required for components/systems not in place yet

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 40

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Proceeding

– Required: Test harness:

A test environment comprised of stubs and drivers

needed to execute a test suite.

 Driver (Synonym: test driver): A temporary

component or tool that replaces another component

and controls or calls a test item in isolation.

 Stub: A skeletal or special-purpose implementation of

a software component, used to develop or test a

component that calls or is otherwise dependent on it. It

replaces a called component.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 41

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Driver

Comp1

Test

object

Stub

Comp4

Integration Testing

• Integration strategy „Top-down“
The component at the top of the component hierarchy is tested first,

lower level components are simulated by stubs.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 42

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Comp 1

Stub

Comp2

Stub

Comp3

Test Cycle 1

Comp 1

Comp 2 Comp 3

Test Cycle 2

Stub

Comp4

Test Cycle 3

Comp 1

Comp 2 Comp 3

Comp 4

Level 1

Level 2

Level 3

Integration Testing

• Integration strategy “Bottom-up”
The lowest level components are tested first, and then

used to facilitate the testing of higher level components.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 43

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Level 1

Level 2

Level 3

Driver

Comp3

Test Cycle 1

Comp 4

Test Cycle 3

Comp 1

Comp 4

Comp 3 Comp 2

Test Cycle 2

Comp 4

Comp 3 Comp 2

Driver

Comp1

Integration Testing

• Integration strategy “Hardest first”

– The most critical components

are developed and tested first

– Drivers and stubs are required, means effort

– Feasibility is checked at an early stage

reducing the risk that the project fails

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 44

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Integration strategy

“Function oriented”/”Transaction oriented”

– Integrate the components that realize a common

functionality/transaction

– Drivers and stubs are required, means effort

– User/Data oriented approach

reducing the risk that the project fails

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 45

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Integration strategy “Ad hoc”

– Integrate the components that are available

– Drivers and stubs are required, means effort

– Integration and integration testing could start

early

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 46

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Integration Testing

• Integration strategy “Big bang”

– Integrate the components all at once

– No drivers and stubs are required

– Integration and integration testing could start only

at a later stage

– Localization of defects very difficult

– Risky strategy

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 47

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

System Testing

System testing:
A test level that focuses on verifying that a system as a
whole meets specified requirements.

• Objectives
– Validating that the system is complete and

will work as expected
 Consider end-to-end tasks

– Verifying whether the functional and non-functional
behaviors of the system are as designed and specified

– Finding defects

– Preventing defects from escaping to higher test levels or
production

– Building confidence in the quality of the system as a whole

– Reducing risk

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 48

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

System Testing

• Objectives – depending on context
– verifying data quality

– automated system regression tests
to ensure that changes have not broken
existing features or end-to-end capabilities.

• Additional hints
– System testing
 often produces information that is used by

stakeholders to make release decisions.

 may also satisfy legal or regulatory requirements or
standards.

– The test environment should ideally correspond to the
final target or production environment

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 49

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

System Testing

• Test basis
– System and software

requirement
specifications
(functional and
non-functional)

– Risk analysis reports

– Use cases

– Epics and user stories

– Models of
system behavior

– State diagrams

– System and user
manuals

• Test objects
– Applications

– Hardware/software
systems

– Operating systems

– System under test
(SUT):
A type of test object that
is a system.

– System configuration
and configuration data

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 50

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

System Testing

• Typical defects and failures

– Incorrect calculations

– Incorrect or unexpected

system functional or non-functional behavior

– Incorrect control and/or data flows within the system

– Failure to properly and completely carry out

end-to-end functional tasks

– Failure of the system to work

 properly in the system environment(s)

 as described in system and user manuals

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 51

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

System Testing

• Specific approaches and responsibilities

– focus on the overall, end-to-end behavior of the

system as a whole,

both functional and non-functional.

– typically carried out by independent testers who

rely heavily on specifications

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 52

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

System Testing

• Specific approaches and responsibilities

– Risk: Communication issues

 Defects in specifications like

 missing user stories,

 incorrectly stated business requirements.

 Impact:

 Lack of understanding of system behavior

 Disagreements

 False positives

 False negatives

 Mitigation: Early involvement of testers in
user story refinement/review

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 53

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

Acceptance testing: A test level that focuses on
determining whether to accept the system.

• Objectives:
– Establishing confidence in the quality of the system as a

whole

– Validating that the system is complete and will work as
expected

– Verifying that functional and non-functional behaviors of
the system are as specified

• Finding defects is often not an objective

• Finding a significant number of defects
to be considered a major project risk.

• Different forms of acceptance testing are known

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 54

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• User acceptance testing:

A type of acceptance testing performed to

determine if intended users accept the system.

– Objective: building confidence that the users can

use the system to meet their needs, fulfill

requirements, and perform business processes

with minimum difficulty, cost, and risk.

– Real or simulated operational environment.

– Done by business users (Customers, system

users)

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 55

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Operational acceptance testing
(Synonym: production acceptance testing):
A type of acceptance testing performed to determine
if operations and/or systems administration staff can
accept a system.

– Objective: confidence that the operators or system
administrators can keep the system working properly
for the users in the operational environment, even
under exceptional or difficult conditions.

– Testing in a (simulated) production environment by

 operations,

 systems administration staff.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 56

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Operational acceptance testing

– Scope:

 Testing of backup and restore

 Installing, uninstalling and upgrading

 Disaster recovery

 User management

 Maintenance tasks

 Data load and migration tasks

 Periodic checks for security vulnerabilities

 Performance testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 57

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Contractual acceptance testing:

A type of acceptance testing performed to verify

whether a system satisfies its contractual

requirements.

– Objective: compliance has been achieved

– Basics: Acceptance criteria as defined in the

contract for custom-developed software

– Performed by users or independent testers

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 58

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Regulatory acceptance testing:
A type of acceptance testing performed to verify
whether a system conforms to relevant laws,
policies and regulations.

– Objective: compliance has been achieved

– Basics: any regulations that must be adhered to, like

 government regulations,

 legal regulations,

 safety regulations.

– performed by users or by independent testers,
sometimes audited by regulatory agencies.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 59

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Alpha and beta testing

– Alpha testing: A type of acceptance testing performed in
the developer's test environment by roles outside the
development organization.

– Beta testing: A type of acceptance testing performed at
an external site to the developer's test environment by
roles outside the development organization.

– typically used by developers of commercial off-the-shelf
(COTS) software to get feedback from potential or existing

 users,

 customers, and/or

 operators.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 60

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Alpha and beta testing

– Objectives

 Confidence that the system could be used under

normal, everyday conditions

 Detection of defects related to the conditions and

environment(s) in which the system will be used,

especially when those conditions and

environment(s) are difficult to replicate by the

development team.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 61

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Test basis
– Business processes

– User or business
requirements

– Regulations,
legal contracts and
standards

– Use cases and/or
user stories

– System requirements

– System or
user documentation

– Installation procedures

– Risk analysis reports

• Test basis for operational
acceptance testing
– Backup and restore

procedures

– Disaster recovery
procedures

– Non-functional
requirements

– Operations documentation

– Deployment and
installation instructions

– Performance targets

– Database packages

– Security standards or
regulations

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 62

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Test objects

– System under test

– System configuration and configuration data

– Business processes for a fully integrated system

– Recovery systems and hot sites (for business
continuity and disaster recovery testing)

– Operational and maintenance processes

– Forms

– Reports

– Existing and converted production data

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 63

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Typical defects and failures

– System workflows
do not meet business or user requirements

– Business rules are not implemented correctly

– System does not satisfy
contractual or regulatory requirements

– Non-functional failures such as

 security vulnerabilities,

 inadequate performance efficiency under high
loads,

 improper operation on a supported platform.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 64

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Acceptance Testing

• Specific approaches and responsibilities

– Acceptance testing is often the responsibility of

 customers,

 business users,

 product owners,

 operators of a system,

 other stakeholders.

– often last test level; possible exceptions:

 When a COTS software product is installed or
integrated

 A new functional enhancement before system testing

 At the end of an iteration in agile projects

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 65

Acceptance Testing

System Testing

Integration Testing

Component (Unit) Testing

Summary

• Component testing

• Integration testing
– Component integration

testing

– System integration testing

– Integration strategies:
 Top-down

 Bottom-up

 Hardest first

 “Function oriented”/
”Transaction oriented”

 Ad hoc

 Big bang

• System testing

• Acceptance testing
– User acceptance testing

– Operational acceptance
testing

– Contractual acceptance
testing

– Regulatory acceptance
testing

– Alpha and beta testing.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 66

Test Levels

Contents

2.1 Software Development Lifecycle Models

2.2 Test Levels

2.3 Test Types

2.4 Maintenance Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 67

Test types

• Test type:
A group of test activities based on specific test objectives
aimed at specific characteristics of a component or system.
– Evaluating functional quality characteristics, such as

completeness, correctness, and appropriateness

– Evaluating non-functional quality characteristics, such as
reliability, performance efficiency, security, compatibility, and
usability

– Evaluating whether the structure or architecture of the
component or system is correct, complete, and as specified

– Evaluating the effects of changes, such as confirming that
defects have been fixed (confirmation testing) and looking for
unintended changes in behavior resulting from software or
environment changes (regression testing)

• To measure testing specific characteristics of a software
system, coverage is used.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 68

Test types

• 8 product quality characteristics as defined by

ISO 25010 to evaluate a system and software

 functional suitability,

 performance efficiency

 compatibility,

 usability,

 reliability,

 security,

 maintainability,

 portability.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 69

Source: https://en.wikipedia.org/wiki/ISO/IEC_9126

Non-functional

characteristics

Functional

characteristic

Functional testing

• Functional testing:

Testing performed to evaluate if a component or

system satisfies functional requirements.

– is the testing of

“what” the system should do.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 70

Functional testing

• Basics: Functional requirements, such as
– Business requirements specifications,

– functional specifications,

– use cases,

– epics: A large user story that cannot be delivered as
defined within a single iteration or is large enough
that it can be split into smaller user stories.

– User stories: A user or business requirement consisting of
one sentence expressed in the everyday or business
language which is capturing the functionality a user needs,
the reason behind it, any non-functional criteria, and also
including acceptance criteria.

• Functional requirements could be undocumented
(implicit requirements)

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 71

Functional testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 72

Risks

Requirements
specification User Story

As a Scheduler I want
to update a given

appointment so that I
could add another

date.

Functional
specification

Previous
version
User manual

Previous
version
Bug reports

Use Cases

Interviews
with end
users,
potential
customers undocumented

Black-box

techniques

Test

conditions

Test cases

Business
Blueprint

for

SAP-Systems

Online forums

Functional testing

• To be performed at all test levels – with different focus,
e.g., tests for components may be based on a
component specification

• Black-box techniques are used to derive
– test conditions and

– test cases

• Functional coverage
– to measure which functionality has been exercised by tests

– expressed as a percentage of the type(s) of element being
covered

• Expert knowledge
– Special skills or knowledge of the business area

– Understanding of different roles

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 73

2.2

4.2

Non-functional testing

• Non-functional testing:

Testing performed to evaluate that a component

or system complies with non-functional

requirements.

– is the testing of

“how well” the system behaves.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 74

performance
efficiency

compatibility

usability

reliability

security

maintainability
portability

4.2

Non-functional testing

• To be performed at all test levels as early as possible

• Black-box techniques are used to derive

– test conditions and

– test cases.

Example: boundary value analysis to define the
stress conditions for performance tests.

• Non-Functional coverage

– to measure the thoroughness of non-functional testing

– is the extent to which some type of non-functional element
has been exercised by tests

– expressed as a percentage of the type(s) of element being
covered

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 75

Non-functional testing

• Expert knowledge required, e.g., knowledge of

– inherent weaknesses of a design or technology

Example:

 Security vulnerabilities associated with particular

programming languages

– particular user base

Example:

 User profiles of

healthcare facility management systems

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 76

White-box Testing

• White-box testing (Synonyms: clear-box testing,
code-based testing, glass-box testing,
logic-coverage testing, logic-driven testing,
structural testing, structure-based testing):
Testing based on an analysis of the internal
structure of the component or system.

• System’s internal structure or implementation may
include
– code,

– architecture,

– work flows,

– data flows within the system.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 77

4.3

White-box Testing

• Structural coverage:
Coverage measures based on the internal
structure of a component or system.

– extent to which some type of structural element
has been exercised by tests,

– expressed as a percentage of the type of element
being covered.

– At the component testing level we talk about
Code coverage: The coverage of code.
… with different aspects like statement coverage
or decision coverage

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 78

White-box Testing

• Required skills/knowledge:

– coding related to used programming language(s),

– how data is stored (e.g., to evaluate possible

database queries),

– how to use coverage tools and to correctly

interpret their results.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 79

Change-related Testing

Change-related testing: A type of testing initiated by

modification to a component or system.

• Changes are made to a system

– to correct a defect ,

– because of new or changing functionality.

• Change-related testing should confirm that the

changes have

– corrected the defect or

– implemented the functionality correctly, and

– not caused any unforeseen negative consequences.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 80

Change-related Testing

• Confirmation testing (Synonym: re-testing):

A type of change-related testing performed after

fixing a defect to confirm that a failure caused by

that defect does not reoccur.

– Depending on the context conduction of

 steps to reproduce the failure(s) caused by the

defect,

 all test cases that failed due to the defect,

 new tests to cover changes needed to fix the

defect.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 81

Change-related Testing

• Regression testing:
A type of change-related testing to detect whether
defects have been introduced or uncovered in
unchanged areas of the software.

• Possible changes
– Fix of a defect

– Introducing new/changed functionality/features;
especially in agile software development and IoT

– Changes to the environment, such as a new version
of an operating system or database management
system

– New version of a COTS software product

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 82

Change-related Testing

• Especially for evolving systems very important.
A change made in one part of the code, could
accidentally affect the behavior

– of other parts of the code,

– within the same component,

– in other components of the same system, or even

– in other systems.

• Regression test suites

– run many times and generally evolve slowly,

– are a strong candidate for automation.
=> should start as soon as possible in the project

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 83

Test types and test levels

Example: banking application – functional tests

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 84

Acceptance Testing

System Integration

Testing

System Testing

Component Integration

Testing

Component (Unit) Testing

• Banker approves a credit application

• Banker declines a credit application

• Check an account holder’s credit score

with an external microservice

• Account holder applies for a line of

credit on his checking account

• Account information captured at the

user interface is passed to the

business logic.

• Calculate compound interest.

Test types and test levels

Example: banking application – non-functional tests

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 85

Acceptance Testing

System Integration

Testing

System Testing

Component Integration

Testing

Component (Unit) Testing

• Usability tests: Evaluate the accessibility of the

banker’s credit processing interface for people with

disabilities.

• Reliability tests: Evaluate system robustness if the

credit score microservice fails to respond.

• Portability tests: Check if the presentation layer

works on all supported browsers and mobile

devices.

• Security tests: Check buffer overflow vulnerabilities

due to data passed from the user interface to the

business logic.

• Performance tests: Evaluate the number of CPU

cycles required to perform a complex total interest

calculation..

Test types and test levels

Example: banking application – white-box tests

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 86

Acceptance Testing

System Integration

Testing

System Testing

Component Integration

Testing

Component (Unit) Testing

• Cover all supported financial data file structures and

value ranges for bank-to-bank transfers.

• Exercise all possible inquiry types sent to the credit

score microservice.

• Cover sequences of web pages that can occur

during a credit line application.

• Exercise how each screen in the browser interface

passes data to the next screen and to the business

logic.

• Achieve complete statement and decision coverage

for all components that perform financial

calculations.
4.3

Test types and test levels

Example: banking application – change-related tests

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 87

Acceptance Testing

System Integration

Testing

System Testing

Component Integration

Testing

Component (Unit) Testing

• All previously-failed tests are re-executed after a

defect found in acceptance testing is fixed.

• Tests of the application interacting with the credit

scoring microservice are re-executed daily as part

of continuous deployment of that microservice.

• All tests for a given workflow are re-executed if any

screen on that workflow changes.

• Confirm fixes to interface-related defects as the

fixes are checked into the code repository.

• Automated regression tests are built for each

component and included within the continuous

integration framework.

Summary

• Test types

– functional

– non-functional

– white-box

– change-related, differing between

 confirmation testing

 regression testing

• All test types could be performed at any

test level

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 88

Contents

2.1 Software Development Lifecycle Models

2.2 Test Levels

2.3 Test Types

2.4 Maintenance Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 89

• Once deployed to production environments,
software and systems need to be maintained, e.g.,
– Changes to fix defects

– New functionality

– Alter already-delivered functionality

– Preserve or improve non-functional
quality characteristics,
 especially

 less important

Maintenance Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 90

performance
efficiency

compatibility

usability

reliability
security

maintainability

portability

Maintenance Testing

• Maintenance:

The process of modifying a component or

system after delivery to correct defects,

improve quality characteristics, or

adapt to a changed environment.

• Maintenance testing:

Testing the changes to an operational system or

the impact of a changed environment to an

operational system.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 91

Maintenance Testing

• A maintenance release may require
maintenance testing

– at multiple test levels,

– using various test types.

• The scope of maintenance testing depends on:

– The degree of risk of the change, for example,
the degree to which the changed area of software
communicates with other components or systems

– The size of the existing system

– The size of the change

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 92

Triggers for Maintenance

• Reasons for software maintenance, and thus

maintenance testing

– Modifications

 Planned enhancements (e.g., release-based),

 Corrective and emergency changes,

 Changes of the operational environment

(operational system and/or database upgrades),

 Upgrades of COTS software,

 Patches for defects and vulnerabilities.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 93

Triggers for Maintenance

• Reasons for software maintenance,
and thus maintenance testing
– Migration

 Migration from one platform to another operational tests
 of the new environment

 of the changed software

 Data migration  tests of data conversion
Data from another application are migrated into the system
being maintained

 Retirement of a system could require
 testing of data migration,

 testing archiving if long data retention periods are required,

 testing of restore/retrieve procedures,

 regression testing of remaining functionality.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 94

Impact Analysis for Maintenance

Impact analysis:
The identification of all work products affected by a change,
including an estimate of the resources needed to
accomplish the change.

• evaluates the changes that were made for a
maintenance release to identify the intended
consequences

• evaluates expected and possible side effects of a
change

• identifies the areas in the system that will be affected by
the change

• helps to identify the impact of a change on existing tests.

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 95

Impact Analysis for Maintenance

• Impact analysis challenges

– Specifications (e.g., business requirements, user
stories, architecture) are out of date or missing

– Test cases are not documented or are out of date

– Bi-directional traceability between tests and the test
basis has not been maintained

– Tool support is weak or non-existent

– The people involved do not have domain and/or
system knowledge

– No sufficient attention has been paid to the software's
maintainability during development

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 96

Summary

• Maintenance testing is required for productive
systems because of changes related to

– Modifications

 Planned enhancements with new/changed
functionality

 Corrective and emergency changes like hot fixes of
defects

 Patches for defects and vulnerabilities.

– Migration

 Migration from one platform to another

 Data migration

 Retirement of a system

Uwe Gühl, 2020
Software Testing – Foundation Level

Testing Throughout the Software Development Lifecycle
 02 - 97

