
Software Testing

Foundation Level

Lecture 3 – Static Testing

Uwe Gühl

Contents

• 3.1 Static Testing Basics

• 3.2 Review Process

• 3.3 Static Analysis by Tools

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 2

Contents

• 3.1 Static Testing Basics

• 3.2 Review Process

• 3.3 Static Analysis by Tools

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 3

Static Testing Basics

• Dynamic testing techniques

 requires the execution of software

• Static testing techniques

 without execution of software

 early test activity

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 4

Static Testing Basics

• Types of static testing

– Manual examination of work products
 Review: A type of static testing in which a work
product or process is evaluated by one or more
individuals to detect defects or to provide
improvements

– Tool-driven evaluation of the code or other work
products
 Static analysis: The process of evaluating a
component or system without executing it, based
on its form, structure, content, or documentation

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 5

Work Products that Can Be

Examined by Static Testing
• Specifications, including

– business requirements,

– functional requirements,

– security requirements.

• Epics, user stories, and acceptance criteria

• Architecture and design specifications

• Code

• Testware, including
– test plans,

– test cases,

– test procedures, and

– automated test scripts

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 6

Work Products that Can Be

Examined by Static Testing

• User guides

• Web pages

• Contracts, project plans, schedules, and budget

planning

• Configuration set up and infrastructure set up

• Models, such as activity diagrams,

 related to Model-Based testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 7

Work Products that Can Be

Examined by Static Testing

• How to conduct static testing?

– Reviews can be applied to any work product
Precondition: Corresponding skills/knowledge

– Static analysis can be applied

 to any work product with a formal structure
(typically code or models)
Precondition: an appropriate static analysis tool
exists.

 with tools that evaluate work products written in
natural language such as requirements (e.g.,
checking for spelling, grammar, and readability).

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 8

1.3

Benefits of Static Testing

• Enabling the early detection of defects before
dynamic testing is performed, for example in

– requirements or design specifications reviews,

– backlog refinement.

• Identifying defects which are not easily found by
dynamic testing

• Preventing defects in design or coding by
uncovering inconsistencies, ambiguities,
contradictions, omissions, inaccuracies, and
redundancies in requirements

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 9

Benefits of Static Testing

• Increasing development productivity (e.g., due to

improved design, more maintainable code)

• Reducing

– development cost and time

– testing cost and time

– total cost of quality over the software’s lifetime, due to

fewer failures later in the lifecycle or after delivery into

operation

• Improving communication between team members

in the course of participating in reviews

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 10

Differences between

Static and Dynamic Testing

• Static and dynamic testing

– have the same objectives like

 providing an assessment of the quality of the work

products

 identifying defects as early as possible

– complement each other by finding different types

of defects.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 11

1.1

Differences between

Static and Dynamic Testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 12

Find defects in
work products –
causes of
failures

Can improve the
consistency and
internal quality
of work products

Static
testing

Find failures

Focuses on
externally visible
behaviors.

Dynamic
testing

Typically

easier and

cheaper to find

and fix

Differences between

Static and Dynamic Testing
• Possible defects related to static testing:

– Requirement defects (e.g., inconsistencies, ambiguities,
contradictions, omissions, inaccuracies, and
redundancies)

– Design defects (e.g., inefficient algorithms or database
structures, high coupling, low cohesion)

– Coding defects (e.g., variables with undefined values,
variables that are declared but never used, unreachable
code, duplicate code)

– Deviations from standards (e.g., lack of adherence to
coding standards)

– Incorrect interface specifications (e.g., different units of
measurement used by the calling system than by the
called system)

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 13

Differences between

Static and Dynamic Testing
• Possible defects related to static testing:

– Security vulnerabilities (e.g., susceptibility to buffer
overflows)

– Gaps or inaccuracies in test basis traceability or
coverage (e.g., missing tests for an acceptance
criterion)

• Most types of maintainability defects can only be
found by static testing
– improper modularization,

– poor reusability of components,

– code that is difficult to analyze and modify without
introducing new defects.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 14

Summary

• Static testing:
– no execution of software

– finding defects in work products

 Dynamic testing:
– execution of software

– finding failures

• Both, static and dynamic testing, complement each other
by finding different types of defects

• Static testing covers
– reviews,

– static analysis.

• Finding defects early is one of the most important
benefits of static testing

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 15

Contents

• 3.1 Static Testing Basics

• 3.2 Review Process

• 3.3 Static Analysis by Tools

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 16

Review Process

• Reviews vary from informal to formal.

– Informal review:

A type of review that does not follow a defined

process and has no formally documented output.

– Formal review:

A type of review that follows a defined process

with a formally documented output.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 17

Review Process

• The formality of a review process relates to
– software development lifecycle model,

– maturity of the development process,

– complexity of the work product to be reviewed,

– any legal or regulatory requirements,

– need for an audit trail.

• The focus depends on agreed objectives
– Finding defects

– Gaining understanding

– Educating participants such as testers and new team
members

– Discussing and deciding by consensus

• Standard ISO/IEC 20246 informs about reviews

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 18

Work Product Review Process

4. Issue

communi-

cation and

analysis

5. Fixing

and

reporting

3. Individual

review

2. Initiate

review
1. Planning

1. Planning

• Defining the scope
– purpose of the review,

– what documents or parts of documents to review, and

– quality characteristics to be evaluated.

• Estimating effort and timeframe

• Identifying review characteristics such as the review type
with roles, activities, and checklists

• Selecting the people to participate in the review and
allocating roles

• Defining the entry and exit criteria for more formal review
types like inspections

• Checking that entry criteria are met – for more formal
review types

4. Issue

communi-

cation and

analysis

5. Fixing

and

reporting

3.

Individual

review

2. Initiate

review

1. Planning

• Distributing
– the work product (physically or by electronic means),

– issue log forms,

– checklists,

– related work products.

• Explaining to the participants
– scope,

– objectives,

– process,

– roles,

– work products.

• Answering all questions of participants about the review

4. Issue

communi-

cation and

analysis

5. Fixing

and

reporting

3.

Individual

review

2. Initiate

review

1. Planning

In general executed as individual preparation

• Reviewing all or part of the work product

• Noting

– potential defects,

– recommendations,

– questions.

4. Issue

communi-

cation and

analysis

5. Fixing

and

reporting

3.

Individual

review

2. Initiate

review

1. Planning

• Communicating identified potential defects, typically
in a review meeting

• Analyzing potential defects, assigning ownership
and status to them

• Evaluating and documenting quality characteristics

• Evaluating the review findings against the exit
criteria to make a review decision

– reject,

– major changes needed,

– accept,

– accept with minor changes.

4. Issue

communi-

cation and

analysis

5. Fixing

and

reporting

3.

Individual

review

2. Initiate

review

1. Planning

• Creating defect reports
for findings that require changes to a work product

• Fixing defects found in the work product reviewed
– typically done by the author

• Communicating defects to the appropriate person or team
(when found in a work product related to the work product
reviewed)

• Recording updated status of defects (in formal reviews),
potentially including the agreement of the comment originator

• Gathering metrics (for more formal review types)

• Checking that exit criteria are met (for more formal review
types)

• Accepting the work product when the exit criteria are reached

4. Issue

communi-

cation and

analysis

5. Fixing

and

reporting

3.

Individual

review

2. Initiate

review

Roles and responsibilities in a

formal review

• Author

– Creates the work product under review

– Fixes defects in the work product under review

if necessary

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 25

Author

Manager

Roles and responsibilities in a

formal review

• Management

– Is responsible for review planning

– Decides on the execution of reviews

– Assigns staff, budget, and time

– Monitors ongoing cost-effectiveness

– Executes control decisions in the event of

inadequate outcomes

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 26

Moderator

Roles and responsibilities in a

formal review

• Moderator

(Synonyms: inspection leader, facilitator):

The person responsible for running review

meetings.

– Ensures effective running of review meetings

when held

– Mediates, if necessary, between the various

points of view

– Is often the person upon whom the success

of the review depends

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 27

Review

leader

Roles and responsibilities in a

formal review

• Review leader

– Takes overall responsibility for the review

– Decides who will be involved and organizes when

and where it will take place

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 28

Reviewer

Roles and responsibilities in a

formal review

• Reviewer (Synonyms: checker, inspector):

A participant in a review, who identifies issues in

the work product.

– Background:

 Subject matter experts,

 Persons working on the project,

 Stakeholders with an interest in the

work product,

 Individuals with specific technical or

business backgrounds

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 29

Reviewer

Roles and responsibilities in a

formal review

• Reviewer

– Identifies potential defects in the work product

under review

– Typically represents different perspectives like

 tester,

 developer,

 user,

 operator,

 business analyst,

 usability expert.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 30

Scribe

Roles and responsibilities in a

formal review

• Scribe (Synonym: recorder):

A person who records information during the

review meetings.

– Collates potential defects found during the

individual review activity

– Records from a review meeting (when held)

 new potential defects,

 open points, and

 decisions

– Least important role

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 31

Roles and responsibilities in a

formal review

• Based on review type

– one person may play more than one role,

– actions associated with each role may vary.

• Standard ISO/IEC 20246 describes more roles

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 32

Review Types

• All presented review types

– help finding defects

– could be combined for one work product like

 first an informal review,

 then a technical review

– can be done as peer reviews:

A type of review of

work products performed

by others qualified

to do the same work.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 33

Reviewer Author

Review Types

• Informal review (e.g., buddy check, pairing, pair review)
– Main purpose: detecting potential defects

– Possible additional purposes:
 generating new ideas or solutions,

 quickly solving minor problems

– Not based on a formal (documented) process

– May not involve a review meeting

– May be performed by a colleague of the author (buddy
check) or by more people

– Results may be documented

– Varies in usefulness depending on the reviewers

– Use of checklists is optional

– Very commonly used in Agile development

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 34

Review Types

• Walkthrough (Synonym: structured
walkthrough): A type of review in which an
author leads members of the review through a
work product and the members ask questions
and make comments about possible issues.

– Main purposes:

 find defects,

 improve the software product,

 consider alternative implementations,

 evaluate conformance to standards and
specifications.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 35

Review Types

• Walkthrough

– Possible additional purposes:

 exchanging ideas about techniques or style

variations,

 training of participants,

 achieving consensus.

– Individual preparation before the review meeting

is optional

– Review meeting is typically led by the author of

the work product

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 36

Review Types

• Walkthrough

– Scribe is mandatory

– Use of checklists is optional

– May take the form of

 scenarios,

 dry runs, or

 simulations.

– Potential defect logs and review reports are produced

– May vary in practice from quite informal to very formal

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 37

Review Types

• Technical review:

A type of formal review by a team of technically-

qualified personnel that examines the quality of

a work product and identifies discrepancies from

specifications and standards.

– Main purposes:

 gaining consensus,

 detecting potential defects.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 38

Review Types

• Technical review

– Possible further purposes:

 evaluating quality and building confidence in the

work product,

 generating new ideas, motivating

 enabling authors to improve future work products,

 considering alternative implementations.

– Reviewers should be technical peers of the

author, and technical experts in the same or other

disciplines

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 39

Review Types

• Technical review

– Individual preparation before the review meeting

is required

– Review meeting is optional, ideally led by a

trained facilitator (typically not the author)

– Scribe is mandatory, ideally not the author

– Use of checklists is optional

– Potential defect logs and review reports are

produced

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 40

Review Types

• Inspection:
A type of formal review to identify issues in a
work product, which provides measurement to
improve the review process and the software
development process.

– Main purposes:

 detecting potential defects,

 evaluating quality and building confidence in the
work product,

 preventing future similar defects through author
learning and root cause analysis

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 41

Review Types

• Inspection

– Possible further purposes:

 motivating and enabling authors to improve future

work products and the software development

process,

 achieving consensus.

– Follows a defined process

 with formal documented outputs,

 based on rules and checklists.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 42

Review Types

• Inspection

– Uses clearly defined roles

 may include a dedicated reader

During the review meeting he reads the work product

aloud often paraphrase – describes it in own words

– Individual preparation before the review meeting is

required

– Reviewers are

 peers of the author or

 experts in other disciplines that are relevant to the

work product

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 43

Applying Review Techniques

• Different review techniques could be used during

the individual review to uncover defects.

• The effectiveness of the techniques may differ

depending on the type of review used.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 44

Applying Review Techniques

• Ad hoc review: A review technique performed
informally without a structured process.

– little or no guidance on how a review should be
performed.

– Reviewers often

 read the work product sequentially

 identify and document issues as they encounter them

– commonly used technique

– highly dependent on reviewer skills

– may lead to many duplicate issues being reported by
different reviewers.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 45

Applying Review Techniques

• Checklist-based review: A review technique guided by
a list of questions or required attributes.
– Review checklists

 are distributed at review initiation

 consist of a set of questions based on potential defects,
which may be derived from experience.

 should be specific to the type of work product under review

 should be maintained regularly to cover issue types missed
in previous reviews.

– Main advantage: Systematic coverage of typical defect
types.

– Care should be taken not to simply follow the checklist in
individual reviewing, but also to look for defects outside the
checklist.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 46

Applying Review Techniques

• Scenarios and dry runs

– Scenario-based reviewing: A review technique in which a
work product is evaluated to determine its ability to
address specific scenarios.

 Reviewers get structured guidelines
how to read through the work product.

 Supports reviewers to do “dry runs” on the work product
based on expected usage of the work product

 Scenarios provide reviewers with better guidelines on how
to identify specific defect types than simple checklist entries.

– As with checklist-based reviews, in order not to miss other
defect types (e.g., missing features), reviewers should not
be constrained to the documented scenarios.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 47

Applying Review Techniques

• Perspective-based reading
(Synonym: perspective-based reviewing):
A review technique in which a work product is
evaluated from the perspective of different
stakeholders with the purpose to derive other work
products.

– Typical stakeholder viewpoints include

 end user,

 marketing,

 designer,

 tester,

 operations.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 48

Applying Review Techniques

• Perspective-based reading
– Using different stakeholder viewpoints leads to

 more depth in individual reviewing

 less duplication of issues across reviewers

– Checklists often used

– Example:
 Work product: requirements specification

 Task: A tester should generate draft acceptance tests

 Perspective-based reading => all information there?

– Result of empirical studies:
 Perspective-based reading is the most effective

general technique for reviewing requirements and
technical work products.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 49

Applying Review Techniques

• Role-based reviewing: A review technique in which
a work product is evaluated from the perspective of
different stakeholders.

– Specific end user types like

 experienced/inexperienced,

 senior/child.

– Specific roles in the organization, such as

 user administrator,

 system administrator,

 performance tester.

– Same principles as in perspective-based reading

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 50

Success Factors for Reviews

• Organizational success factors for reviews

– Each review has clear objectives, defined during
review planning, and used as measurable exit criteria

– Review types are applied which are suitable to
achieve the objectives and are appropriate to the type
and level of software work products and participants

– Any review techniques used, such as checklist-based
or role-based reviewing, are suitable for effective
defect identification in the work product to be
reviewed

– Any checklists used address the main risks and are
up to date

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 51

Success Factors for Reviews

• Organizational success factors for reviews

– Large documents

 are written and reviewed in small chunks

 quality control is exercised by providing authors early
and frequent feedback on defects

– Participants have adequate time to prepare

– Reviews are scheduled with adequate notice

– Management supports the review process (e.g., by
incorporating adequate time for review activities in
project schedules)

– Reviews are integrated in the company's quality
and/or test policies.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 52

Success Factors for Reviews

• People-related success factors

– The right people are involved to meet the review
objectives, for example, people with different skill sets or
perspectives, who may use the document as a work input

– Testers are seen as valued reviewers

 contribute to the review

 learn about the work product,

 enables them to prepare earlier more effective tests,

– Participants dedicate adequate time and attention to detail

– Reviews are conducted on small chunks

 Reviewers do not lose concentration during
 individual review and/or

 the review meeting (when held)

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 53

Success Factors for Reviews

• People-related success factors
– Defects found are acknowledged, appreciated, and

handled objectively

– The meeting is well-managed, valuable use of time

– The review is conducted in an atmosphere of trust; the
outcome will not be used for the evaluation of the
participants

– Participants avoid body language and behaviors that might
indicate boredom, exasperation, or hostility to other
participants

– Adequate training is provided, especially for more formal
review types such as inspections

– A culture of learning and process improvement is
promoted

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 54

Examples for Reviews

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 55

Requirements

Engineer

Require-

ments

Tester

Test

Cases

Findings

Tester
Requirements

Engineer

Code

Findings

Developer

Mai

Findings

Developer

Jim

Summary

• Main review process

activities are

1. Planning

2. Initiate review

3. Individual review

4. Issue communication

and analysis

5. Fixing and reporting

• Roles in reviews

– Author

– Management

– Moderator (or

facilitator)

– Review leader

– Reviewers

– Scribe (or recorder)

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 56

Summary

• The four most

common types of

reviews are

– Informal review

– Walkthrough

– Technical review

– Inspection

• Review techniques

– Ad hoc

– Checklist-based

– Scenarios and dry

runs

– Perspective-based

– Role-based

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 57

• Success factor for reviews:

Testers are seen as valued reviewers

Contents

• 3.1 Static Testing Basics

• 3.2 Review Process

• 3.3 Static Analysis by Tools

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 58

Static Analysis by Tools

• Static analysis

– important for safety-critical computer systems

(e.g., aviation, medical, or nuclear software),

– important part of security testing,

– often incorporated into automated software build

and distribution tools, for example in

 agile development,

 continuous delivery, and

 continuous deployment.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 59

Static Analysis by Tools

• Static analysis tools analyse

– program code like

 control flow

 data flow

– generated output like

 HTML

 XML

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 60

Excurses

Static Analysis by Tools

• Benefits

– Early detection of defects prior to test execution

– Early warning about suspicious aspects of the code or
design by the calculation of metrics, such as a high
complexity measure

– Identification of defects not easily found by dynamic
testing

– Detecting dependencies and inconsistencies in
software models such as links

– Improved maintainability of code and design

– Prevention of defects,
if lessons are learned in development

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 61

Excurses

Static Analysis by Tools

• Typical defects discovered
– Referencing a variable with an undefined value

– Inconsistent interfaces between modules and
components

– Variables that are not used or are improperly declared

– Unreachable (dead) code

– Missing and erroneous logic
(potentially infinite loops)

– Overly complicated constructs

– Programming standards violations

– Security vulnerabilities

– Syntax violations of code and software models

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 62

Excurses

Data flow analysis

• For every variable there is a status

– d = defined

The variable gets defined.

A value gets assigned, the variable has a value.

– r = referenced

The variable gets read or is used.

– u = undefined

The variable has no defined value.

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 63

Excurses

Data flow analysis

• Anomalies

– dd (defined / defined)

Defined, then gets defined again before first value

gets used

– du (defined / undefined)

Defined, then gets invalid or undefined without

use

– ur (undefined / referenced)

Undefined variable read or used

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 64

Excurses

Data flow analysis

• Anomalies – examples

– dd
int x = function1();

x = function2(); // redefinition of x → dd

– du
{

 int x = 2;

} // x undefined at exit → du

– ur
int x; // x undefined

int y = x; // x referenced → ur

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 65

Excurses

Help Min Max

void MinMax(int& Min, int& Max) d d

{

 int Help; u

 if (Min > Max) r r

 {

 Max = Help; r d

 Max = Min; r d

 Help = Min; d r

 }

} u

Data flow analysis

Example: Function MinMax should sort 2 numbers

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 66

Excurses

du Anomaly

dd Anomaly

ur Anomaly

Tools for Static Code Analysis

• Tools for static code analysis for different

program languages were collected [1], [2]

• 4 static analysis tools for Java have been

compared [3]

– Jtest has had the highest defection ratio

– Findbugs as open source tool was second

– Advice from the authors: Take the respective

advantage of several tools for detecting bugs in

different categories

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 67

Sources: [1] https://www.codeanalysistools.com/

[2] https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis/

[3] Md. Abdullah Al Mamun, Aklima Khanam, Håkan Grahn, and Robert Feldt:

Comparing Four Static Analysis Tools for Java Concurrency Bugs, 2010,

http://robertfeldt.net/publications/grahn_2010_comparing_static_analysis_tools_for_concurrency_bugs.pdf

Excurses

https://www.codeanalysistools.com/
https://www.codeanalysistools.com/
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis/
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis/
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis/
http://robertfeldt.net/publications/grahn_2010_comparing_static_analysis_tools_for_concurrency_bugs.pdf
http://robertfeldt.net/publications/grahn_2010_comparing_static_analysis_tools_for_concurrency_bugs.pdf
http://robertfeldt.net/publications/grahn_2010_comparing_static_analysis_tools_for_concurrency_bugs.pdf

Tools for Static Code Analysis

• Example: Sonarqube [1]

• Example: Findbugs [2]

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 68

Excurses

Sources: [1] https://www.sonarqube.org/

[2] http://marketplace.eclipse.org/content/findbugs-eclipse-plugin

https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin

Summary

• Static Analysis by Tools offers a lot of benefits,
especially early detection of defects prior to test
execution

• Data flow analysis to detect anomalies

– dd (defined / defined)

– du (defined / undefined)

– ur (undefined / referenced)

• Several tools for static code analysis for different
programming languages are available,
commercial and open source versions

Uwe Gühl, 2020
Software Testing – Foundation Level

Static Testing
 03 - 69

Excurses

