
Software Testing

Foundation Level

Lecture 4 – Test Techniques

Uwe Gühl

Contents

• 4.1 Categories of Test Techniques

• 4.2 Black-box Test Techniques

• 4.3 White-box Test Techniques

• 4.4 Experience-based Test Techniques

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 2

Contents

• 4.1 Categories of Test Techniques

• 4.2 Black-box Test Techniques

• 4.3 White-box Test Techniques

• 4.4 Experience-based Test Techniques

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 3

Categories of Test Techniques

Test technique
(Synonyms: test case design technique,
test specification technique,
test design technique):
A procedure used to define test conditions,
design test cases, and specify test data.

• The international standard
ISO/IEC/IEEE 29119-4
contains descriptions of test techniques and their
corresponding coverage measures

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 4

Categories of Test Techniques

• Which test techniques to use depends on factors like:

– Component or system complexity

– Regulatory standards

– Customer or contractual requirements

– Risk levels and types

– Available documentation

– Tester knowledge and skills

– Available tools

– Time and budget

– Software development lifecycle model

– Types of defects expected in the component or system

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 5

Categories of Test Techniques and

Their Characteristics

• Black-box test technique

(Synonyms: black-box technique,

specification-based technique,

specification-based test technique):

A test technique based on an analysis of the

specification of a component or system.

– applicable to both functional and nonfunctional

testing.

– focus on the inputs and outputs of the test object

without reference to its internal structure.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 6

Categories of Test Techniques and

Their Characteristics
• Black-box test technique

– Test conditions, test cases, and test data are derived from
a test basis that may include

 formal requirements documents like software requirements,

 specifications,

 use cases,

 user stories,

 business processes.

– Test cases may be used to detect gaps between the
requirements and the implementation of the requirements,
as well as deviations from the requirements

– Coverage is measured based on the items tested in the
test basis and the technique applied to the test basis

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 7

Categories of Test Techniques and

Their Characteristics

• White-box test technique

(Synonyms: structural test technique,

structure-based test technique,

structure-based technique,

white-box technique):

A test technique only based on the internal

structure of a component or system.

– focus on the structure and processing within the

test object.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 8

Categories of Test Techniques and

Their Characteristics

• White-box test technique

– Test conditions, test cases, and test data are derived

from a test basis that covers

 software architecture,

 detailed design,

 code of the test object,

 any other source of information regarding the structure

of the software

– Coverage is measured based on the items tested

within a selected structure (e.g., the code or

interfaces) and the technique applied to the test basis

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 9

Categories of Test Techniques and

Their Characteristics

• Grey-box test techniques

– Test Strategy based partly on internals of a

software, involves knowledge of internal data

structures and algorithms for purposes of

designing tests

– execute defined tests at the user, or black-box

level.

– Idea: If you know something about the inside,

you can test it better from outside

– Important with web applications

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 10

Excurses

Categories of Test Techniques and

Their Characteristics

• Experience-based test technique
(Synonyms: experience-based technique,
experience-based test design technique):
A test technique only based on the tester's
experience, knowledge and intuition.

– Test basis may include knowledge and
experience of

 testers,

 developers,

 users,

 other stakeholders.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 11

Categories of Test Techniques and

Their Characteristics

• Experience-based test technique

– Knowledge and experience includes

 expected use of the software,

 its environment,

 likely defects,

 distribution of those likely defects.

– Designing, implementing, and executing tests at

the same time

– Often combined with black-box and white-box test

techniques.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 12

Summary

• Categories of test techniques

– Black-box test technique

 Not considering the internal structure

– White-box test technique

 Based on the internal structure

– Experience-based test techniques

 Based on knowledge and experience of

stakeholders

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 13

Contents

• 4.1 Categories of Test Techniques

• 4.2 Black-box Test Techniques

• 4.3 White-box Test Techniques

• 4.4 Experience-based Test Techniques

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 14

Equivalence Partitioning

• Equivalence partitioning

(Synonym: partition testing): A black-box test

technique in which test cases are designed to

exercise equivalence partitions by using one

representative member of each partition.

• Equivalence partition

(Synonym: equivalence class): A subset of the

value domain of a variable within a component

or system in which all values are expected to be

treated the same based on the specification.

Uwe Gühl, 2020

Software Testing – Foundation Level

Test Techniques
 04 - 15

Equivalence Partitioning

• Inputs to the software or system are divided into

groups that are expected to exhibit similar

behavior.

• Equivalence partitions (or classes) can be found

for

– valid data, i.e., values that should be accepted

 “valid equivalence partition.”

– invalid data, i.e., values that should be rejected

 “invalid equivalence partition.”

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 16

Equivalence Partitioning

• Partitions can also be identified for

– outputs

– internal values

– time-related values (e.g., before or after an event)

– interface parameters (e.g., integrated

components being tested during integration

testing)

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 17

Equivalence Partitioning

• is applicable at all levels of testing.

• can be applied to

– human input

– input via interfaces to a system

– interface parameters in integration testing

• Coverage =

• To achieve 100% coverage,

test cases must cover all identified partitions

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 18

Number of equivalence partitions tested

Total number of identified equivalence partitions

Equivalence Partitioning

Example 1

• Input: Day of the week as number

(1 = Monday, …, 7 = Sunday)

Ideas: Test data

– Valid: 1 ≥ x and x ≤ 7 5

– Invalidlow: x < 1 or 0

– Invalidhigh: x > 7 14

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 19

Legend:

Red values: Invalid values

Green values: Valid values

Equivalence Partitioning

Example 2

• Input: Month as number

(1 = January, …, 12 = December)

Ideas: Test data

– Valid: 1 ≥ x and x ≤ 12 5

– Invalidlow: x < 1 or 0

– Invalidhigh: x > 12 14

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 20

Legend:

Red values: Invalid values

Green values: Valid values

Boundary Value Analysis

• Boundary value analysis:

A black-box test technique in which test cases

are designed based on boundary values.

– can only be used when the partition is ordered,

consisting of numeric or sequential data

• Boundary value:

A minimum or maximum value of an ordered

equivalence partition.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 21

Boundary Value Analysis

• Behavior at the edge of each equivalence
partition is more likely to be incorrect than
behavior within the partition
 Defect detection probable

• The maximum and minimum values of a partition
are its boundary values

• Boundary of a valid partition is
a valid boundary value

• Boundary of an invalid partition is
an invalid boundary value

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 22

Design

corresponding

tests for each

boundary

value

Boundary Value Analysis

• for all test levels

• relatively easy to apply

• defect finding capability is high

• often considered as an extension of equivalence
partitioning or other black-box test design techniques

• Detailed specifications are helpful in determining the
interesting boundaries

• Examples for usage:

– Equivalence classes for user input on screen

– time ranges
(e.g., time out, transactional speed requirements)

– table ranges (e.g., table size is 512*512).

Uwe Gühl, 2020

Software Testing – Foundation Level

Test Techniques
 04 - 23

Boundary Value Analysis

• Classical method: The minimum and maximum

values (or first and last values) of a partition are

its boundary values

• Three-point boundary method: The values per

boundary are the values before, at, and just over

the boundary

• Coverage =

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 24

Number of boundary values tested

Total number of identified boundary test values

Boundary Value Analysis

Example

• Input: Month as number
(1 = January, …, 12 = December)

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 25

13 0 1 12 2 11

Invalidlow Invalidhigh Valid

Classical method:

0, 1, 12, 13

Three-point
boundary method:

0, 1, 2, 11, 12, 13

Decision Table Testing

• Decision table testing:

A black-box test technique in which test cases

are designed to exercise the combinations of

conditions and the resulting actions shown in a

decision table.

• Decision table

(Synonym: cause-effect decision table):

A table used to show sets of conditions and the

actions resulting from them.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 26

Decision Table Testing

• Decision tables

– to capture system requirements that contain
logical conditions

– to document internal system design

– to record complex business rules that should be
implemented

• Proceeding

– Analysis of specification

– Identification of conditions and actions of the
system

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 27

Decision Table Testing

• A decision table contains

– triggering conditions, often combinations of true and

false for all input conditions

– resulting actions for each combination of conditions

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 28

Input conditions,

often BOOLEAN

Idea: One test

per column

Each column is

related to a business

rule that defines a

unique combination

of conditions
capture system

requirements

that contain

logical conditions
Source: Dr. K. Dussa-Zieger: Testen von Software-Systemen, FAU Erlangen-Nürnberg, SS 2007

Decision Table Testing

• Example: Visiting rules in an hospital.

8 Test Cases in the beginning

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 29

Source: Dr. K. Dussa-Zieger: Testen von Software-Systemen, FAU Erlangen-Nürnberg, SS 2007

Decision Table Testing

• Example: Visiting rules in an hospital.

Same impact

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 30

Source: Dr. K. Dussa-Zieger: Testen von Software-Systemen, FAU Erlangen-Nürnberg, SS 2007

Decision Table Testing

• Example: Visiting rules in an hospital.

Reduction to 5 test cases

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 31

Source: Dr. K. Dussa-Zieger: Testen von Software-Systemen, FAU Erlangen-Nürnberg, SS 2007

Decision Table Testing

• Advantage

– Creates combinations of conditions that otherwise

might not have been exercised during testing

• When to use?

– Action of the software depends on several logical

decisions

– For reviewing use cases/user stories with logical

dependencies

• Coverage =

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 32

Number of decision rules tested by at least 1 test case

Total number of decision rules

State Transition Testing

• State transition testing
(Synonym: finite state testing):
A black-box test technique in which test cases
are designed to exercise elements of a state
transition model.

• State transition diagram
(Synonym: state diagram):
A diagram that depicts the states that a
component or system can assume, and shows
the events or circumstances that cause and/or
result from a change from one state to another.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 33

State Transition Testing

• Systems may respond differently to an event
depending on current conditions or previous history
 can be visualized with a state transition diagram.

• A state transition diagram shows

– possible software states,

– how the software enters,

– how the software exits,

– transitions between states,

– the inputs or events that trigger state changes
(transitions),

– the actions which may result from those transitions.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 34

State Transition Testing

• The states of the system or object under test are

separate, identifiable and finite in number

• A state transition table

– shows the relationship between the states and

inputs,

– can highlight possible transitions that are invalid.

• State coverage =

• Transition coverage =

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 35

Number of identified states tested

Total number of identified states

Number of identified transitions tested

Total number of identified transitions

State Transition Testing

• Tests can be designed to
– cover a typical sequence of states,

– cover every state,

– exercise every transition,

– exercise specific sequences of transitions,

– check invalid transitions.

• Usage of state transition testing:
– Menu-based applications

– Embedded software

– Technical automation

– Modelling a business object with specific states
(in business scenarios)

– Testing screen-dialogue flows (Web applications)

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 36

Level 1

do / slow turn

Level 2

do / fast turn

State Transition Testing

• Example 1: Fan

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 37

switch off

sm Room ventilator

Level 2 chosen /

switch 2

Level 1 chosen /

switch 1

switch on

State Transition Testing

• Example 2: Vendor machine

• Status: „empty“, „filled“ (less then full), „full”

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 38

Source: Dr. K. Dussa-Zieger: Testen von Software-Systemen, FAU Erlangen-Nürnberg, SS 2007

empty filled full

init

delete

pop[height = 1]

push push[height = max -1]

pop

displayTop

pop[height > 1]

push[height < max -1]

displayTop

Legend:

Transition [Condition]

State Transition Testing

• Example 2: Vendor machine

– Transition tree

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 39

Source: Dr. K. Dussa-Zieger: Testen von Software-Systemen, FAU Erlangen-Nürnberg, SS 2007

Use Case Testing

• Use case testing
(Synonyms: scenario testing, user scenario testing):
A black-box test technique in which test cases are designed to
exercise use case behaviors.

• Use case:
The specification of the behavior of a system with regards to
its interaction with its users and any other systems.
– Process level

Business process level: Business use case

– System level
System process level: Use case

• Specification:
Documentation that provides a detailed description of a
component or system for the purpose of developing and
testing it.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 40

Use Case Testing

• Components of a use case diagram

– An actor represents

 human user,

 external hardware,

 other component,

 other system.

– Use Case, describing

what the system should do

– System, might be as well

a sub system or component

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 41

Actor

System

Use Case

Automated teller machine (ATM)

Use Case Testing

Example of a use case diagram

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 42

Raise money

Print account

Transfer money

to savings

Bank

customer

Use Case Testing

• A use case usually describes
– basic behavior, Positive

– exceptional or alternative behaviors, Variants

– error handling. Negative

• A use case contains
– preconditions

which need to be met for the use case to work
successfully,

– postconditions
which are the observable results and final state of the
system after the use case has been completed,

– description in natural language.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 43

Use Case Testing

• Example for a

use case

description

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 44

1. Enter customer data.
If customer is yet not registered  UC 12 Register

customer.

2. Enter desired car category

3. Enter desired leasing period

4. If a car is available in the desired period:

1. Reserve a car

2. Enter credit card information

3. Print contract and sign

Otherwise:

Adapt item 2. or 3., if possible

Activities

The rental system is ready to get customer data and to

realize a lease contract
Postcondition

Leasing is done, and the customer has signed the contract
Result

The rental system is ready to get customer data and to

realize a lease contract
Precondition

Customer asks agent Trigger

Customer, agent Actors

A customer comes to the car rental agency and chooses a

car which he rents for a fixed period
Summary

214 / Rent a car Id / Name

Use Case Testing

• Best practice: prioritization of use cases

– High priority: Must – necessary

– Medium priority: Should – important

– Low priority: Could – Nice to have

• Prioritization of use cases should be considered

in derived test cases

• Coverage =

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 45

Number of use case behaviors tested

Total number of use case behaviors

Use Case Testing

• Tests based on use cases

– are designed to exercise

 the defined basic behaviors,

 exceptional or alternative behaviors,

 error handling.

– are typically used in

 system test,

 system integration test,

 acceptance test.

– find often defects related to integration of components

• Functional tests could be used as basis for
non-functional tests, especially for performance tests

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 46

Use Case Testing

User story

• Short, simple description of a feature told from
the perspective of the person who desires the
new capability, usually a user or customer of the
system.
Proposed template:
As a <type of user>,
I want <some goal>
so that <some reason>

• Tests are based on
acceptance criteria

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 47

Example of a

user story

As a scheduler

I want to update a

given appointment

so that I could add

another date

Excurses

Summary

• Black-box test techniques
– Equivalence partitioning

– Boundary value analysis

– Decision table testing
Recommended if behavior depends on several
parameters and their combination

– State transition testing
Recommended for automates

– Use case testing
Standard techniques in typical IT projects

• Black-box test techniques could be used at any test
level

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 48

Contents

• 4.1 Categories of Test Techniques

• 4.2 Black-box Test Techniques

• 4.3 White-box Test Techniques

• 4.4 Experience-based Test Techniques

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 49

Statement Testing and Coverage

• Statement testing:

A white-box test technique in which test cases

are designed to execute statements.

• Statement (Synonym: source statement):

An entity in a programming language, which is

typically the smallest indivisible unit of execution.

• Coverage =

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 50

Number of statements executed by tests

Total number of executable statements

Statement Testing and Coverage

• Example 1

For 100 % statement coverage

1 test case required

A, B, C, D, E

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 51

A

B

C

D

E

Statement Testing and Coverage

• Example 2

For 100 % statement

coverage

1 test case required

(x=1, y=2)

Expected result: z=3

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 52

/* z is greater value+1 */

int foo(int x, int y) {

 int z = x;

 if (y > x) {

z = y;

}

z = z +1;

return z;

}

Decision Testing and Coverage

• Decision testing:
A white-box test technique in which test cases are
designed to execute decision outcomes.

• Decision outcome:
The result of a decision that determines the next
statement to be executed.

• Coverage =

• Decision coverage considers

– If/else clauses

– case statements

– while/do while loops

Uwe Gühl, 2020

Software Testing – Foundation Level

Test Techniques
 04 - 53

Number of decision outcomes executed by tests

Total number of decision outcomes

Decision Testing and Coverage

• Example 1

For 100 % decision coverage

2 test cases required

– A, B, C, D, E

– A, B, D, E

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 54

A

B

C

D

E

Decision Testing and Coverage

• Example 2

For 100 % decision

coverage

2 test cases required

– (x=1, y=2)

Expected result: z=3

– (x=3, y=2)

Expected result: z=4

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 55

/* z is greater value+1 */

int foo(int x, int y) {

 int z = x;

 if (y > x) {

z = y;

}

z = z +1;

return z;

}

The Value of Statement and

Decision Testing

• “Statement-coverage criterion is so weak that it

is generally considered useless.” [Myers*]

• Statement coverage and decision coverage

should be considered as a minimal requirement

• Decision coverage is stronger than statement

coverage:

– 100% decision coverage guarantees

100% statement coverage

 but not vice versa.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 56

*Source: Glenford J. Myers, Tom Badgett, Corey Sandler: The art of software testing, 3rd edition, 2012

Summary

• White-box test techniques

– Statement testing and coverage

– Decision testing and coverage

• Achieving 100% decision coverage guarantees

100% statement coverage (but not vice versa).

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 57

Contents

• 4.1 Categories of Test Techniques

• 4.2 Black-box Test Techniques

• 4.3 White-box Test Techniques

• 4.4 Experience-based Test Techniques

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 58

Experience-based test technique

• Test cases are based on tester’s

– skill and intuition,

– experience with similar applications and

technologies.

• Coverage

– difficult to assess and may not be measurable,

– somehow depending on the tester’s approach

and experience.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 59

Error Guessing

• Error guessing:

A test technique in which tests are derived on

the basis of the tester's knowledge of past

failures, or general knowledge of failure modes.

• Based on questions like

– How did the application work in the past?

– What kind of errors tend to be made?

– Which kind of failures occurred in other similar

applications?

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 60

Error Guessing

• Possible sources

– Issues reported to 1st level support of previous

version

– Archived defects of previous version

– User reports, e.g., in forums

– Experience of end users

• Methodical approach

– Create a list of possible errors, defects, and failures

– Design tests that will expose those failures and the

defects that caused them.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 61

Exploratory Testing

• Exploratory testing:
An approach to testing whereby the testers
dynamically design and execute tests based on their
knowledge, exploration of the test item and the
results of previous tests.

• Test session:
An uninterrupted period of time spent in executing
tests.
In exploratory testing, each test session is focused
on a charter, but testers can also explore new
opportunities or issues during a session.
The tester creates and executes on the fly and
records their progress.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 62

Exploratory Testing

• Informal (not pre-defined) tests are

– designed,

– executed,

– logged,

– evaluated dynamically during test execution.

• Test results are used to

– learn more about the component or system,

– to create tests for the areas that may need more

testing.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 63

Exploratory Testing

• Session-based testing to structure the activity; for
example a testing day; time-box approach

– 09:00 Planning session

– 09:30 Individual testing

– 13:00 Alignment session

– 13:30 Individual testing

– 17:00 Closing session, discussion of failures

– Evaluation of testers remarks

– .

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 64

4.2 Test

charter

1

Test

charter

2

Test

charter

n … Tester

remarks

Tester

remarks
Tester

remarks

Exploratory Testing

• Recommendation

– useful when

 few or inadequate specifications available

 significant time pressure on testing.

– complement to other testing techniques.

• Exploratory testing is strongly associated with

reactive test strategies

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 65

5.2

Checklist-based Testing

• Checklist-based testing:

An experience-based test technique whereby

the experienced tester uses a high-level list of

items to be noted, checked, or remembered, or a

set of rules or criteria against which a product

has to be verified.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 66

Checklist-based Testing

• Based on a checklist testers
– design tests,

– implement tests,

– execute tests.

• Dealing with checklists
– Creating a new one during analysis

– Expanding/modifying an existing one

– Using without modification

• Checklists might support various test types, such as
– functional testing,

– non-functional testing.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 67

Checklist-based Testing

• Checklists can be built based on
– experience,

– business processes,

– knowledge about what is important for the user,

– an understanding of why and how software fails.

• Checklist-based testing
– provides guidelines,

– offers a degree of consistency,

– will probably produce some variability in the actual
testing, resulting in
 greater coverage,

 less repeatability.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 68

Summary

• Experience-based test techniques

– Error guessing

– Exploratory testing

– Checklist-based testing

• Experience-based test techniques

– could support formal testing,

– are based on knowledge and skills of participating

testers,

– are a reliable approach in practice.

Uwe Gühl, 2020
Software Testing – Foundation Level

Test Techniques
 04 - 69

