
Software Testing

Lesson 1
Introduction

Uwe Gühl

Winter 2015 / 2016

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 2

Contents

● Introduction

– Why is Testing Necessary?

– What is Testing?

– Seven Testing Principles

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 3

Introduction

(Image source: Adam Carr,
http://en.wikipedia.org/wiki/Image:Ac.marathon.jpg
 GNU Free Documentation License)

Rumours ...
● Testing is not sexy
● If projects fail, testing is the reason
● In Europe in ancient times bearer of bad news

(sometimes) got killed
● Following legends,

even bearer of
good news died ...

Lowlands of Marathon

http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 4

● Mars Climate Orbiter Loss, September 1999
At 2 am on September 23 1999, 5 minutes before it was due to go behind the planet,
the Mars Climate Orbiter fired it’s main engine to go into orbit around Mars.
No signal was detected from the spacecraft when it was due to come out from behind
the planets shadow.
The plan was for the spacecraft to orbit at an altitude of 153 kilometres, which was far
above the minimum survivable altitude of 85 kilometres However the last six to eight
hours of data indicate the approach altitude was much lower at just 60 kilometres.
So the question needing to be asked was why did the spacecraft approach so low?

● Reason:
The likely cause of the problem related to the transfer of information between the
modules of code written by 2 groups, the Mars Climate Orbiter spacecraft team in
Colorado and the mission navigation team in California.
It seems that one team used English units (e.g., inches, feet and pounds) while
the other used metric units and there seems to have been no conversion between
the two.

Why is Testing Necessary?
(Fatal) software defects

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 5

Why is Testing Necessary?
(Fatal) software defects

● In 1982 there was a crash of a Lockheed F-117A Night
Hawk during takeoff.

● Reason:
The fly-by-wire system
had been hooked up
incorrectly
("yaw rudder"
was used instead of
"pitch elevator"
and visa versa)

(Image source: NASA,
http://en.wikipedia.org/wiki/File:Rollpitchyawplain.png
Public domain)

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 6

Why is Testing Necessary?
(Fatal) software defects

● In September 1994 three parking offender in
Bayreuth (Germany) got a charge
"Preparation of a war of aggression”

● Reason:
Mistaken code

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 7

Why is Testing Necessary?
(Fatal) software defects

● In 1985 all black cars left an assembly hall of
General Motors without a windscreen.

● Reason:
A robot in the assembly hall did not recognize
the colour of black cars.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 8

Why is Testing Necessary?
(Fatal) software defects

● In an hospital therapy planning software miscalculates the proper dosage of
radiation for patients undergoing radiation therapy.
The software allows a radiation therapist to draw on a computer screen the
placement of metal shields called "blocks" designed to protect healthy tissue
from the radiation. But the software will only allow technicians to use four
shielding blocks, and the doctors wish to use five.
The doctors discover that they can trick the software by drawing all five
blocks as a single large block with a hole in the middle. What the doctors
don't realize is that the software gives different answers in this configuration
depending on how the hole is drawn:

– Draw it in one direction and the correct dose is calculated,

– Draw in another direction and the software recommends twice the necessary
exposure.

● At least eight patients die, while another 20 receive overdoses likely to
cause significant health problems.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 9

Why is Testing Necessary?
(Fatal) software defects

● 1996 a prototype of the Ariane 5 rocket of the
European Space Agency was destroyed one
minute after the start.

● Reason:
The code of the Ariane 4 was used.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 10

Why is Testing Necessary?
(Fatal) software defects

"The most expensive hyphen in history"
● 1962 the NASA lost their Venus-spacecraft

Mariner 1, and so about 80 Million US-Dollar
● Reason:

Because of a software bug caused by a missing
superscript bar in in the specification

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 11

Why is Testing Necessary?
(Fatal) software defects

● In Excel 2007 was a calculation defect, leading
to many wrong spread sheets and accounts.

● Reason:
In multiplication, where the result would have
been 65,535, Excel calculated always 100,000

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 12

Why is Testing Necessary?
Causes of Software Defects

Error

Defect (Fault, bug)

Failure

… causes

… may result in

A human action that
produces an incorrect
result. [After IEEE 610]

A flaw in a component or
system that can cause the
component or system to
fail.

Deviation of the component or
system from its expected
delivery, service or result.
[After Fenton]

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 13

Why is Testing Necessary?
Causes of Software Defects

Error - Fault - Failure

A person makes
an error ...

… that creates a
fault in the
software ...

… that can cause
a failure

in operation

http://www.softwaretestinggenius.com

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 14

Why is Testing Necessary?
Role of testing

● Testing of systems and documentation can
– help to reduce the risk of problems occurring during

operation

– contribute to the quality of the software system, if the
defects found are corrected before the system is
released for operational use.

● Software testing may also be required to meet
– contractual requirements,

– legal requirements, or

– industry-specific standards.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 15

Why is Testing Necessary?
Testing and Quality

QM

QA QC

Quality Management

Quality Assurance Quality Control

Are we building the right product?

Detection of faults
by inspecting and testing the product

Are we building the product right?

Prevention of faults
by inspecting and testing the process

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 16

QA QC

Quality Assurance Quality Control

● Relationship QA – QC
As QA inspects the processes, it investigates in test
processes as well, test process improvements e. g.
with TPI [Sog16] or TMMI [TMMI16]

Examples for test processes and test work products
● Defect Management Process
● Test Case Creation Process
● Test Cases
● Test Reports

Why is Testing Necessary?
Testing and Quality

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 17

Why is Testing Necessary?
Testing and Quality

● Measuring the quality of systems

– Number of defects

– Characteristics, e.g. following IEC/ISO 9126
(functionality, reliability, usability, efficiency,
maintainability and portability)

● Good designed test that passes reduces risk in a
system.

● Quality of the software system increases,
if defects found by testing get fixed.

● Testing should be part of quality assurance
(like standards, training, defect analysis).

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 18

Why is Testing Necessary?
How much testing is enough?

● Deciding how much testing is enough should
take account of
– the level of risk, including

➢ technical,
➢ safety, and
➢ business risks,

– project constraints such as time and budget.

● Testing should provide sufficient information to
stakeholders to make informed decisions:
– Release of the software could be delivered?

… to next development step or to customer

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 19

● How many testers does it take to change a light
bulb?
– None.

– Testers just noticed that the room was dark.
Testers don’t fix the problems, they just find them.

● Testing is not accurate science!

What is Testing?
Thoughts

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 20

What is Testing?
Definitions

● The British Standards Institution, in their
standard BS7925-1 from 1998, define testing as
“the process of exercising software to verify that
it satisfies specified requirements and to detect
faults; the measurement of software quality”
[STW07]

● The IEEE* offers a couple of standards:
➢ IEEE 1008 – "IEEE Standard for Software Unit Testing"
➢ IEEE 610 – "IEEE Standard Glossary of Software Engineering

Terminology"
➢ IEEE 829 – "IEEE Standard for Software Test Documentation"

* Institute of Electrical and Electronic Engineers

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 21

What is Testing?
Definitions

– "Testing is the process of establishing confidence
that a program or system does what it is supposed
to." (Hetzel, 1973)

– "Testing is demonstrating that a system is fit for
purpose." (Evans et al. 1996)

– "Testing is the process of executing a program or
system with the intent of finding errors." (Myers,
1979)

– "Testing is the process consisting of all life cycle
activities concerned with checking software and
software-related work products." (Gelperin and
Hetzel, 1988)

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 22

What is Testing?
Statements

– “Program testing can be used to show the presence
of bugs, but never to show their absence!” (Dijkstra
1969)

– “In most cases ‘what’ you test in a system is much
more important than ‘how much’ you test” (Craig
2002)

– “Prioritise tests so that, when ever you stop testing,
you have done the best testing in the time available”
(ISEB testing foundation course material 2003)

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 23

What is Testing?
Goals

● Goal of Testing is to establish a base for the
acceptance of the software by the customer
based on the specification through

1. High test coverage

2. No / Low number of non critical defects left
 There should be no critical defect
 Depends on acceptance criteria defined in
advance

3. Statements concerning software quality

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 24

What is Testing?
Goals

1. High test coverage
➢ Completeness

Ensure all requirements are implemented
 Total scope must be tested at least once (of course
hopefully successful, means test passed)

➢ Critical scope
Ensure that critical requirements are implemented and work
fine
 All high prioritized requirements must be tested
successfully, means test passed

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 25

What is Testing?
Goals

2. No / Low number of defects left
➢ At the end the final version of the application

✗ should have no critical defects any more
✗ should have only a small number of tolerable defects

➢ Demand on testing is therefore, to detect as much critical
defects as soon as possible – idea is to fix them during the
testing cycles

➢ The acceptance criteria should determine, what the
customer expects. A contract could content acceptance
criteria: How many defects with which severity are finally
acceptable? Necessary: Definition of criteria for
✗ Severity Level
✗ Priority Level

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 26

What is Testing?
Goals

3. Statements concerning software quality
➢ Is it possible to install the software?
➢ Is it possible to operate the software, is it compatible?
➢ Fulfils the software the expected functionality?
➢ Do the interfaces work?
➢ Is it possible to use the software optimal

(Software ergonomics, usability, end user needs)
➢ Does the software run steadily, with high performance, fail

proof?
➢ Fulfils the software special cultural features (Multilingualism,

English / metric system, weight units)?
➢ Is the software safe / secure?

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 27

What is Testing?
Debugging and testing

● Debugging
– Development activity that finds, analyses and

removes the cause of the failure.

– Responsible: Developer

● Testing
– Testing can show failures that are caused by

defects.

– Responsible: Tester

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 28

Seven Testing Principles
Principle 1: Presence of defects
● Testing can show that defects are present,

but cannot prove that there are no defects.
● Testing reduces the probability of undiscovered

defects remaining in the software but, even if no
defects are found, it is not a proof of
correctness.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 29

Seven Testing Principles
Principle 2: No exhaustive testing
● Exhaustive testing is impossible
● Testing everything (all combinations of inputs

and preconditions) is not feasible except for
trivial cases.

● Instead of exhaustive testing, risk analysis and
priorities should be used to focus testing efforts.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 30

Seven Testing Principles
Principle 2: No exhaustive testing
Task:
● Testing of a simple program with three integers, up to

16 Bit

● Every combination should be tested

● Duration with assumption 100.000 tests / second

Solution:
● 216 * 216 * 216 = 248 combinations

= 281.474.976.710.656 combinations

● Duration: About 90 years

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 31

Seven Testing Principles
Principle 3 – Early testing

● To find defects early ...
 start testing activities as early as possible in
the software or system development life cycle,
 focus on defined objectives.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 32

● Costs for testing
Software
Development
Activities –
percentage of
work effort
by activities
concerning test:
22.5 %
 up to
 30 %
[Jon05]

Seven Testing Principles
Principle 3 – Early testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 33

● Costs for defects
– Based on Elfriede Dustin

[Dus03]
Source: B. Littlewood, ed.,
Software Reliability,
Achievement and Assesment

– (see following page) based on Jorma Tuominen
[Tuo06] with differentiation:
➢ Standard Software
➢ Individual Software

Prevention is Cheaper Than Cure

Phase Relative Cost
to Correct

Definition 1 $
High-Level Design 2 $
Low-Level Design 5 $
Code 10 $
Unit Test 15 $
Integration Test 22 $
System Test 50 $
Post-Delivery 100 $

Seven Testing Principles
Principle 3 – Early testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 34

Seven Testing Principles
Principle 3 – Early testing

Costs for defects [Tuo06]

40-1000Production

30-70Acceptance testing

15-40Development testing

10Coding

3-6Design

1Requirements

Relative cost to
correct a
defect

Phase where defect is
discovered

100+Post delivery

50System test

22Integration test

15Unit test

10Code

5Low-level design

2High-level design

1Definition

Relative cost to
correct a
defect

Phase where defect is
discovered

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 35

Seven Testing Principles
Principle 3 – Early testing

What is the source of defects? [Ric05]

 Requirements play a central role in IT projects

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 36

Seven Testing Principles
Principle 3 – Early testing

Example: Costs for defects in Germany
[LOT01]
● Guessed loss because of software defects for

medium and big companies in Germany:
About 84,4 Billion Euro per year

● Productivity loss because of computer outfalls
because of incorrect software about 2,6% of
business volume:
About 70 Billion Euro per year

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 37

Seven Testing Principles
Principle 3 – Early testing

Error avoidance (1/4)
● Prevention

... not cure
● The earlier a defect is detected, the cheaper is

the correction
● More cheaper are defects, that don't occur at all
● Idea: Increasing quality „from the scratch“ with

early (code) reviews ...

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 38

Seven Testing Principles
Principle 3 – Early testing

Error avoidance (2/4)
● „Peer reviews“ - capable experts review the

work
Use: will detect about 31 % up to 93 % of all
defects, average: 60 %

● “Perspective review” – evaluators use the work
for own tasks (For example specification:
Generation of test cases, or a manual out of it)
Use: 35 % more defects are detected
compared to non-purposeful reviews

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 39

Error avoidance (3/4)
● Own structured working, e.g. desk checks

(Humphrey's Personal Software Process)
including development of a theoretical solution,
writing of pseudo code, then implementation
Use: up to 75 % less defects

● Structured Walk through
Programmer presents his work as moderator to
a group, which tries to find defects.
Yet in preparation he detects defects himself.

Seven Testing Principles
Principle 3 – Early testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 40

Error avoidance (4/4)
● Pair programming

Quality is rising when doing pair programming
[TDD05]
TDD research studies in industry „… showed that programmers using
TDD produced code that passed 18 percent to 50 percent more
external test cases than code produced by corresponding control
groups“ with minimal impact to productivity

Seven Testing Principles
Principle 3 – Early testing

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 41

Seven Testing Principles
Principle 4 – Defect clustering

● Focus testing effort proportionally to the
expected and later observed defect density of
modules.

● A small number of modules usually contains
most of the defects discovered during
prerelease testing, or is responsible for most of
the operational failures.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 42

Pareto principle
● Defect clustering is based on the

Pareto principle – the 80-20 rule.
Approximately 80 per cent of the problems are
caused by 20 per cent of the modules [Jaw13].

Seven Testing Principles
Principle 4 – Defect clustering

of defects

Module
Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod7

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 43

Pareto principle
● Fenton and Ohlsen detected in empirical

investigations, that 20 % of the modules
(equals to about 30 % of the code) are source
of 60 % of the defects [FO00].

Seven Testing Principles
Principle 4 – Defect clustering

Pareto diagram showing % of modules versus % of faults for release n [FO00]

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 44

Seven Testing Principles
Principle 5 – Pesticide paradox

● If the same tests are repeated over and over
again, eventually the same set of test cases will
no longer find any new defects.

● To overcome this “pesticide paradox”:

– Regularly review and revise test cases

– Write new and different tests to exercise
different parts of the software or system to find
potentially more defects.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 45

Seven Testing Principles
 Principle 6 – Context dependence

Testing is context dependent
● Basic for Testing is the needed software quality.

● Testing is done differently in different contexts.

● Compare

– Quality requirements of
a medical software to a web application

– Testing of
a safety-critical software to an e-commerce site.

● Balance
Effort for testing must be related to expected quality

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 46

Seven Testing Principles
Principle 7 – Absence-of-errors fallacy

● Finding and fixing defects does not help if the
system built is unusable and does not fulfill the
users’ needs and expectations.

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 47

Sources (1/2)

● [Dus03] Elfriede Dustin: Book Excerpt: Software Testing Starts When
Projects Begin, CSC, Effective Software Testing – 50 Ways to Improve Your
Software Testing, 2003

● [FO00] Norman E. Fenton, Niclas Ohlsen: Quantitative Analysis of Faults
and Failures in a Complex Software System; IEEE Transactions on Software
Engineering, Vol. 26, No. 7, July 2000; fenton_ohlsson_published.pdf

● [ISTQB-CTFLS11] International Software Testing Qualifications Board:
Certified Tester Foundation Level Syllabus, Released Version 2011,
http://www.istqb.org/downloads/syllabi/foundation-level-syllabus.html

● [ISTQB-GWP15] Glossary Working Party of International Software Testing
Qualifications Board: Standard Glossary of Terms Used in Software Testing,
Version 3.01, 2015, http://www.istqb.org/downloads/glossary.html

● [Jaw13] Ranjeet Jawale: Defect clustering & Pesticide paradox, 2013
http://www.softwaretestingclub.com/profiles/blogs/defect-clustering-
pesticide-paradox

Winter 2015 / 2016 Uwe Gühl - Software Testing 01 48

Sources (2/2)

● [Jon05] Capers Jones: Software Cost Estimating Methods for Large
Projects,
© Software Productivity Research, LLC, Apr 2005

● [Lot01] Study of LOT Consulting Karlsruhe, page 31, 2001, IT-Services
3/2001

● [Ric05] Randall W. Rice: STBC The Economics of Testing, 2005,
http://www.riceconsulting.com/public_pdf/STBC-WM.pdf

● [Sog16] Sogeti: TPI® - Test Process Improvement, 2016,
http://www.sogeti.com/solutions/testing/tpi/

● [TDD05] Test-Driven Development: Concepts, Taxonomy, and Future
Direction, IEEE Sep 2005

● [TMMI16] TMMI© foundation, 2016, tmmi.org
● [Tuo06] Jorma Tuominen: Test process analysis of Gateway GPRS Support

Node, Nokia Networks, http://www.netlab.tkk.fi/opetus/s383310/05-06/Kalvot
%2005-06/Tuominen_170106.ppt, Jan 2006

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48

